example, In: J. Yang, D. Liu, Kinshuk, A. Tlili, M. Chang, E. Popescu, D. Burgos, Z. Altınay, Resilience and Future
of Smart Learning. ICSLE 2022, Lecture Notes in Educational Technology, Springer, Singapore, 2022, doi:
10.1007/978-981-19-5967-7_6.
[25] J. Zhang, J. Zhu, W. Tu, M. Wang, Y. Yang, F. Qian, Y. Xu, The effectiveness of a digital twin learning system
in assisting engineering education courses: a case of landscape architecture, Applied Sciences, 2024, 14, 6484, doi:
10.3390/app14156484
[26] M. Grieves, J. Vickers, Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems,
In: J. Kahlen, S. Flumerfelt, A. Alves, A. (eds) Transdisciplinary Perspectives on Complex Systems. Springer, Cham.,
doi: 10.1007/978-3-319-38756-7_4.
[27] M. Liu, S. Fang, H. Dong, C. Xu, Review of digital twin about concepts, technologies, and industrial
applications, Journal of Manufacturing Systems, 2021, 58, 346–361, doi: 10.1016/j.jmsy.2020.06.017.
[28] D. Jankovskis, I. Cirule, A. Carbone, Digital twins and e-learning: navigating challenges and opportunities. In:
Gabriella Casalino, Raffaele Di Fuccio, Giovanni Fulantelli, Paolo Raviolo, Pier Cesare Rivoltella, Davide Taibi, Giusi
Antonia Toto, Higher Education Learning Methodologies and Technologies Online. HELMeTO 2023.
Communications in Computer and Information Science, 2024, 2076. Springer, Cham., doi: 10.1007/978-3-031-67351-
1_12.
[29] I. Kabashkin, AI-based digital twins of students: a new paradigm for competency-oriented learning
transformation, Information, 2025, 16, 846, doi: 10.3390/info16100846.
[30] C. E. Cremonini, C. Capela, A. da Silva, M. C. Gaspar, J. C. Vasco, Digital twin integration for workforce training:
transforming smes in the ornamental stone industry, Systems, 2025, 13, 120, doi: 10.3390/systems13020120.
[31] M. V. Taylor, Z. Muwaffak, M. R. Penny, B. R. Szulc, S. Brown, A. Merrittd, S. T. Hilton, Optimising digital
twin laboratories with conversational AIs: enhancing immersive training and simulation through virtual reality, Digital
Discovery, 2025, 4, 1134-1141, doi: 10.1039/D4DD00330F.
[32] Y-Z. Lin, K. Petal, A. H. Alhamadah, S. Ghimire, M. W. Redondo, D. R. V. Corona, J. Pacheco, S. Salehi, P.
Satam, Education with Generative AI and Digital Twins: VR, RAG, and zero-shot sentiment analysis for industry 4.0
workforce development, arXiv preprint 2025, doi: 10.48550/arXiv.2502.14080.
[33] S. M. M. Sajadieh, S. D. Noh, From simulation to autonomy: reviews of the integration of artificial intelligence
and digital twins, International Journal of Precision Engineering and Manufacturing-Green Technology, 2025, 12,
1597–1628, doi: 10.1007/s40684-025-00750-z.
[34] A. Kovari, AI gem: context-aware transformer agents as digital twin tutors for adaptive learning, Computers,
2025, 14, 367, doi: 10.3390/computers14090367.
[35] D. Adler, The future of AI-driven corporate training: what to expect in 2025, Data Society, 2025.
[36] Janine Arantes, Digital twins and the terminology of “personalization” or “personalized learning” in educational
policy: A discussion paper, Policy Futures in Education, 2023, 22, 524-543, doi: 10.1177/14782103231176357.
[37] I. F. Silveira, A. Cardoso, V. F. Martins, Simulation in education and training: from virtual reality to digital twins.
In: A. B. Lliteras, A. S. Sprock, V. Agredo-Delgado, (eds) Proceedings of the 19th Latin American Conference on
Learning Technologies (LACLO 2024). LACLO 2024, Lecture Notes in Educational Technology. Springer,
Singapore, doi: 10.1007/978-981-96-3698-3_27.
[38] J. R. Corbeil, Chapter-The future of learning: AI-driven education in 2040, Teaching and Learning in the Age of
Generative AI, 2025, 29, Taylor & Francis, 1st Edition, Routledge.
[39] S. Amin, M. I. Uddin, A. A. Alarood, W. K. Mashwani, A. Alzahrani and A. O. Alzahrani, Smart E-learning
framework for personalized adaptive learning and sequential path recommendations using reinforcement learning," in
IEEE Access, 2023, 11, 89769-89790, doi: 10.1109/ACCESS.2023.3305584.
[40] F. Longo, A. Padovano, F. De Felice, A. Petrillo, M. Elbasheer, From “prepare for the unknown” to “train for
what's coming”: A digital twin-driven and cognitive training approach for the workforce of the future in smart factories,
Journal of Industrial Information Integration, 2023, 32, 100437, doi: 10.1016/j.jii.2023.100437.
[41] B. R. Barricelli, E. Casiraghi, D. Fogli, A survey on digital twin: definitions, characteristics, applications, and
design implications, IEEE Access, 2019, 7, 167653-167671, doi: 10.1109/ACCESS.2019.2953499.
[42] R. Verdecchia, L. Scommegna, B. Picano, M. Becattini and E. Vicario, "Network Digital Twins: A Systematic
Review, IEEE Access, 2024, 12, 145400-145416, 2024, doi: 10.1109/ACCESS.2024.3453034.
[43] F. Tao, H. Zhang, A. Liu and A. Y. C. Nee, Digital twin in industry: state-of-the-art, IEEE Transactions on
Industrial Informatics, 2019, 15, 2405-2415, doi: 10.1109/TII.2018.2873186
[44] A. P. Muniyandi, B. Balusamy, R. K. Dhanaraj, V. Ellappan, S. Murali, M. Sathyamoorthy, L. Nkenyereye,
Privacy preserved reinforcement learning model using generative ai for personalized e-learning, IEEE Transactions
on Consumer Electronics, 2024, 70, 6157-6165, doi: 10.1109/TCE.2024.3398824.
[45] W. S. Sayed, A. M. Noeman, A. Abdellatif, M. Abdelrazek, M. G. Badawy, A. Hamed, S. El-Tantawy, AI-based