Use of artificial intelligence (AI)-assisted technology for manuscript preparation
The authors confirm that there was no use of artificial intelligence (AI)-assisted technology for assisting in the writing
or editing of the manuscript and no images were manipulated using AI.
References
[1] A. Tahir, J. Böling, M. H. Haghbayan, H. Toivonen, J. Plosila, Swarms of unmanned aerial vehicles – a survey,
Journal of Industrial Information Integration, 2019, doi: 10.1016/j.jii.2019.100106.
[2] M. R. Rezaee, N. A. W. A. Hamid, M. Hussin, Z. A. Zukarnain, Comprehensive review of drones collision
avoidance schemes: challenges and open issues, IEEE Transactions on Intelligent Transportation Systems, 2024, 25,
doi: 6397-6426, doi: 10.1109/TITS.2024.3375893.
[3] E. Şahin, Swarm robotics: from sources of inspiration to domains of application, In Proceedings of the Swarm
Robotics Workshop, Santa Monica, CA, USA, 17 July 2004, Springer: Berlin/Heidelberg, Germany, 2005, 10–20.
[4] L. Bayındır, A review of swarm robotics tasks, Neurocomputing, 2016, 172, 292–321, doi:
10.1016/j.neucom.2015.05.116.
[5] H. Yao, Rongjun Qin, X. Chen, Unmanned aerial vehicle for remote sensing applications—a review, Remote
Sensing, 2019, 11, 1443, doi: 10.3390/rs11121443.
[6] V. U. Castrillo, A. Manco, D.Pascarella, G. Gigante, A review of counter-UAS technologies for cooperative
defensive teams of drones, Drones, 2022, 6, 65, doi: 10.3390/drones6030065.
[7] G. E. M. Abro, S. A. B. M. Zulkifli, R. J. Masood, V. S. Asirvadam, A. Laouti, Comprehensive review of UAV
detection, security, and communication advancements to prevent, Drones, 2022, 6, 68, doi: 10.3390/drones6100284.
[8] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a review from the swarm engineering
perspective, Swarm Intelligence, 2013, 7, 1–41, doi: 10.1007/s11721-012-0075-2.
[9] A. Singh, G. Singh Malhi, T. Singh, G. S. Bhatia, Swarm robotics: a review from mechanical engineering
perspective, International Journal of Advanced Engineering Research and Applications, 2020, 5, 120-127.
[10] S. Min, H. Nam, ACACT: Adaptive collision avoidance algorithm based on estimated collision time for swarm
UAVs, IEEE Access, 2023, 11, 1–1, doi: 10.1109/ACCESS.2023.3327928.
[11] G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz, T. Vicsek, Outdoor flocking and
formation flight with autonomous aerial robots, International Conference on Intelligent Robots and Systems, 2014,
3866–3873.
[12] Y. Xue, L. Wang, L. Li, Research on automatic recharging technology for automated guided vehicles based on
multi-sensor fusion, Applied Sciences, 2024, 14, 8606, doi: 10.3390/app14198606
[13] D. Mahmoud, M. A. Salem, H. Ramadan, M. I. Roushdy, Comparison of Optimization Techniques for 3D Graph-
based SLAM, Proceedings of the 4th European Conference of Computer Science (ECCS '13), Paris, France, 2013.
[14] J. Yasin, M-H. Haghbayan, J. Heikkonen, H. Tenhunen, J. Plosila, Formation maintenance and collision avoidance
in a swarm of drones, In Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent
Control (ISCSIC 2019), Association for Computing Machinery, New York, NY, USA, Article 1, 1–6, doi:
10.1145/3386164.3386176.
[15] G. De Masi, E. Ferrante, Quality-dependent adaptation in a swarm of drones for environmental monitoring, 2020
Advances in Science and Engineering Technology International Conferences (ASET), 2020, 1-6, doi:
10.1109/ASET48392.2020.9118235.
[16] N. Ashush, S. Greenberg, E. Manor, Y. Ben-Shimol, Unsupervised drones swarm characterization using RF
signals analysis and machine learning methods, Sensors, 2023, 23, 1589.
[17] E. Zaitseva, V, Levashenko, R. Mukhamediev, N. Brinzei, A. Kovalenko, A. Symagulov, A. (2023). Review of
reliability assessment methods of drone swarm (fleet) and a new importance evaluation-based method of drone swarm
structure analysis. Mathematics, 11(11), 2551.
[18] D. Marek, M. Paszkuta, J. Szyguła, P. Biernacki, A. Domański, M. Szczygieł, M. Król, K. Wojciechowski,
General concepts in swarm of drones control: Analysis and implementation, Proceedings of the 2023 IEEE
International Conference on Big Data (BigData), 2023, 5070–5077.
[19] K. Huang, J. Chen, J. Oyekan, Decentralised aerial swarm for adaptive and energy efficient transport of unknown
loads,
Swarm and Evolutionary Computation, 2021, 67, 100957, doi: 10.1016/j.swevo.2021.100957.
[20] Z. Zhang, W. Yang, Z. Shi, Y. Zhong, Hardware-in-the-loop simulation platform for unmanned aerial vehicle
swarm system: Architecture and application, Proceedings of the 2020 Chinese Control Conference (CCC), 2020, 1–6.
[21] V. J. Hodge, R. Hawkins, R. Alexander, Deep reinforcement learning for drone navigation using sensor data,
Neural Computing and Applications, 2021, 33, 2015–2033.
[22] O. Velasco, J. Valente, P. J. Alhama Blanco, M. Abderrahim, An open simulation strategy for rapid control design
in aerial and maritime drone teams: A comprehensive tutorial. Drones, 2020, 4(3), 37.
[23] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm intelligence: From natural to artificial systems. Santa Fe Institute
Studies in the Sciences of Complexity, Oxford University Press, 2001, 1–8.
[24] F. Ducatelle, G. A. Di Caro, L. M. Gambardella, Principles and applications of swarm intelligence for adaptive