managing 50 users to 500+ users. The GPIO interface makes it even more adaptable for multi- layered security by
supporting integration with *more relays, RFID readers, or biometric sensors. From a cost standpoint, the whole setup
comprising the Raspberry Pi (£55), webcam (£15), relay module (~£3), and other accessories remains well within £80–
£100. For tiny institutions seeking sophisticated security infrastructure without relying on expensive commercial
systems in budget- conscious housing societies this is desirable option. Ultimately, this research not only meets its
objective of delivering a safe and automated entrance system utilising facial recognition but also demonstrates how
open-source tools, simple hardware, and smart design can come together to produce a very practical and deployable
solution. The system may be scaled to enterprise grade use with small improvements-such as face anti spoofing, voice
alarms, and database encryption making it a possible basis for the next generation smart AI driven access control
systems.
Conflict of Interest
There is no conflict of interest.
Supporting Information
Not applicable
Use of artificial intelligence (AI)-assisted technology for manuscript preparation
The authors confirm that there was no use of artificial intelligence (AI)-assisted technology for assisting in the writing
or editing of the manuscript and no images were manipulated using AI.
References
[1] N. S. Irjanto, N. Surantha, Home security system with face recognition based on convolutional neural network,
International Journal of Advanced Computer Science and Applications, 2020, 11, 408– 412, doi:
10.14569/IJACSA.2020.0111152.
[2] S. Sunardi, A. Fadlil, D. Prayogi, Room security system using machine learning with face recognition verification,
Revue d'Intelligence Artificial, 2023, 37, 1187–1196, doi: 10.18280/ria.370510.
[3] D. A. Abdullah, D. R. Hamad, I. Y. Maolood, H. Beitollahi, A. K. Ameen, S. A. Aula, A. A. Abdulla, M. Y. Shakor,
S. S. Muhamad, A novel facial recognition technique with focusing on masked faces, Ain Shams Engineering Journal,
2025, 16, 103350, doi: 10.1016/j.asej.2025.103350.
[4] G. Guo, S. Z. Li. K. Chan, Face recognition by support vector machines, Proceedings of IEEE International
Conference on Face and Gesture Recognition, 2001, 196– 201, doi: 10.1109/FG.2000.10019.
[5] M. N. ElBedwehy, G. M. Behery, R. Elbarougy, Face recognition based on relative gradient magnitude strength,
Arabian Journal for Science and Engineering, 2020, 45, 1–18, doi:10.1007/s13369-020-04538-y.
[6] A. J. Russ, M. Sauerland, C. E. Lee, M. Bindemann, Individual differences in eyewitness accuracy across multiple
lineups of faces, Cognitive Research: Principles and Implications, 2018, 3, 1–17, doi: 10.1186/s41235-018-0121-8.
[7] N. D. Hasan, A. M. Abdulazeez, Face recognition based on deep learning: a comprehensive review, Indonesian
Journal of Computer Science, 2024, 13, 3779-3797, doi:10.33022/ijcs.v13i3.4037
[8] T. S. Gunawan, M. H. H. Gani, F. D. A. Rahman, M. Kartiwi, Development of face recognition on Raspberry Pi
for security enhancement of smart home system, Indonesian Journal of Electrical Engineering and Informatics, 2017,
5, 317-325, doi: 10.52549/ijeei.v5i4.361.
[9] A. Boxey, A. Jadhav, P. Gade, P. Ghanti, A. O. Mulani, Face recognition using Raspberry Pi, Journal of Image
Processing and Intelligent Remote Sensing, 2022, 2, 15–23, doi: 10.55529/jipirs.24.15.23.
[10] M. H. Khairuddin, S. Shahbudin, M. Kassim, A smart building security system with intelligent face detection and
recognition," IOP Conference Series: Materials Science and Engineering, 2021, 1176, 012030, 2021, doi:
10.1088/1757-899X/1176/1/012030.
[11] S. Pecolt, A. Błazęjewski, T. Królikowski, I. Maciejewski, K. Gierula, and S. Glowinski, Personal Identification
using embedded raspberry pi-based face recognition systems, Applied Sciences, 2025, 15, 887, doi:
10.3390/app15020887.
[12] F. Faisal, S. A. Hossain, Smart security system using face recognition on raspberry Pi, in Proceedings 2019 13th
International Conference on Software, Knowledge, Information Management and Applications (SKIMA), Island of
Ulkulhas, Maldives, 2019, 1–6, doi: 10.1109/SKIMA47702.2019.8982466.
[13] E. Gamess and S. Hernandez, Performance evaluation of different raspberry pi models for a broad spectrum of
interests, International Journal of Advanced Computer Science and Applications, 2022, 13, 819– 829, 2022, doi:
10.14569/IJACSA.2022.0130288.
[14] R. Syafeeza, M. K. M. F. Alif, Y. N. Athirah, A. S. Jaafar, A. H. Norihan, M. S. Saleha, IoT based facial
recognition door access control home security system using Raspberry Pi, International Journal of Power Electronics
and Drive System, 2020, 11, 417–424, doi: 10.11591/ijpeds.v11.i1.pp417-424.
[15] M. A. Islam, M. T. Ahmed, M. I. Hossain, M. H. Kabir, S. Roy, Face recognition based physical layer security
system for next-generation wireless communication, World Journal of Advanced Research And Reviews, 2023, 18,
524–532, doi: 10.30574/wjarr.2023.18.3.1099.