/10.1016/j.asoc.2014.10.022.
[21] C. Chen, Z. Liu, S. Wan, J. Luan, Q. Pei, Traffic flow prediction based on deep learning in Internet of vehicles.
IEEE Transactions on Intelligent Transportation Systems, 2020, 22, 3776–3789. doi: 10.1109/TITS.2020.3025856.
[22] G. Guo, W. Yuan, Short-term traffic speed forecasting based on graph attention temporal convolutional networks,
Neurocomputing, 2020, 410, 387–393, doi: 10.1016/j.neucom.2020.06.001.
[23] C. Li, P. Xu, Application on traffic flow prediction of machine learning in intelligent transportation, Neural
Computing and Applications, 2020, 33, 613–624, doi: 10.1007/s00521-020-05002-6.
[24] G. Meena, D. Sharma, M. Mahrishi, Traffic prediction for intelligent transportation system using machine
learning. In 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and
Internet of Things (ICETCE), 2020, 145-148, doi: 10.1109 /ICET CE48199.2020.9091758.
[25] E. L. Manibardo, I. Laña, J. L. Lobo, J. Del Ser, New perspectives on the use of online learning for congestion
level prediction over traffic data, In International Joint Conference on Neural Networks (IJCNN), 2020, 1–8, doi:
10.1109/ IJCNN48605.2020.9207661.
[26] W. Shu, K. Cai, N. N. Xiong, A short-term traffic flow prediction model based on an improved gate recurrent unit
neural network, IEEE Transactions on Intelligent Transportation Systems, 2021, 23, 16654–16665, doi:
10.1109/TITS.2021.3094659.
[27] J. Tang, J. Zeng, Y. Wang, H. Yuan, F. Liu, H. Huang, Traffic flow prediction on urban road network based on
license plate recognition data: Combining attention-LSTM with genetic algorithm, Transportmetrica A: Transport
Science, 2020, 17, 1217–1243, doi: 10.1080/23249935.2020.1845250.
[28] Z. Wang, X. Su, Z. Ding, Long-term traffic prediction based on LSTM encoder-decoder architecture, IEEE
Transactions on Intelligent Transportation Systems, 2021, 22, 6561–6571, doi: 10.1109/TITS.2020.2995546.
[29] Z. Xing, S. Zhao, W. Guo, X. Guo, Geometric feature extraction of point cloud of chemical reactor based on
dynamic graph convolution neural network, ACS Omega, 2021, 6, 21410–21424, doi: 10.1021/acsomega.1c02213.
[30] N. Zafar, I. U. Haq, J. U. R. Chughtai, O. Shafiq, Applying hybrid LSTM-GRU model based on heterogeneous
data sources for traffic speed prediction in urban areas, Sensors, 2022, 22, 3348, doi: 10.3390/s22093348.
[31] H. Zheng, X. Li, Y. Li, Z. Yan, T. Li, GCN-GAN: Integrating graph convolutional network and generative
adversarial network for traffic flow prediction, IEEE Access, 2022, 10, 94051–94062, doi:
10.1109/ACCESS.2022.3204036.
[32] X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi, B. Yin, Deep learning on traffic prediction: methods, analysis, and future
directions, IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 4927–4943, doi: 10.1109 /TITS.
2021.3054840.
[33] Y. Modi, R. Teli, A. Mehta, K. Shah, M. Shah, A comprehensive review on intelligent traffic management using
machine learning algorithms, Innovative Infrastructure Solutions, 2022, 7, 128, doi: 10.1007/s41062-021-00718-3.
[34] Z. Xing, S. Zhao, W. Guo, X. Guo, S. Wang, M. Li, H. He, Analyzing point cloud of coal mining process in much
dust environment based on dynamic graph convolution neural network, Environmental Science and Pollution
Research, 2023, 30, 4044–4061, doi: 10.1007/s11356-022-22490-2.
[35] V. Singh, S. K. Sahana, V. Bhattacharjee, A novel CNN-GRU-LSTM based deep learning model for accurate
traffic prediction, Discover Computing, 2025, 28, 38, doi: 10.1007/s10791-025-09526-0.
[36] J. Fang, Z. Shao, S. T. B. Choy, J. Gao, STPFormer: A state-of-the-art pattern-aware spatio-temporal transformer
for traffic forecasting, 2025, arXiv preprint arXiv:2508.13433.
[37] M. Wu, W. Weng, J. Li, Y. Lin, J. Chen, D. Seng, SFADNet: Spatio-temporal fused graph based on attention
decoupling network for traffic prediction, 2025, arXiv preprint arXiv:2501.04060.
[38] PRISMA, 2021, PRISMA 2020 statement and checklist. Retrieved October 8, 2025, from https://www.prisma-
statement.org/prisma-2020-statement.
[39] VOSviewer, 2025, VOSviewer – Visualizing scientific landscapes. Leiden University’s Centre for Science and
Technology Studies (CWTS). Retrieved October 8, 2025, from https://www.vosviewer.com.
[40] M. Attioui, A. Boudiaf, A. Bouzid, Congestion forecasting using machine learning: A systematic review, 2010–
2024, Infrastructures, 2025, 10, 76, doi: 10.3390/futuretransp5030076.
[41] U. Jilani, M. Asif, I. Yousuf, M. Rashid, S. Shams, P. Otero, A systematic review on urban road traffic congestion,
Wireless Personal Communications, 2023, 133, 1019–1041, doi: 10.1007/s11277-023-10700-0.
[42] M. Hassan, A. Tariq, S. U. Rehman, M. Ahmed, Big data applications in intelligent transport systems: A
bibliometric analysis and review, Discover Internet of Things, 2025, 2, 49, doi: 10.1007/s44290-025-00205-z.
[43] N. J. Van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping,
Scientometrics, 2010, 84, 523–538, doi: 10.1007/s11192-009-0146-3
[44] J. Zhou, X. Chen, Y. Liu, A bibliometric analysis and methodological overview of transportation research trends,
Transportation Research Part A: Policy and Practice, 2024, 185, 103013, doi: 10.1007/s11192-009-0146-3.
Publisher Note: The views, statements, and data in all publications solely belong to the authors and contributors. GR