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1. Introduction 

Urban traffic congestion is one of the most pressing 

challenges of the twenty-first century, impacting quality of 

life, economic productivity, mobility, and environmental 

sustainability.[1,2] Accurate traffic flow forecasting has 

therefore become central to Intelligent Transportation 

Systems (ITS), particularly at junctions where multiple flows 

converge and diverge, creating bottlenecks and 

congestion.[3,4] Junction-level prediction is especially critical 

since these points concentrate the complexity of road 

networks and often determine overall traffic dynamics.[5] 

Traditional models such as regression-based methods, 

Kalman filters, and ARIMA struggled with the nonlinear and 

high-dimensional nature of modern traffic data.[6] The 

learning method offered advances through CNNs for spatial 

feature extraction and RNN variants (LSTM, GRU) for 

temporal dynamics.[5,7] However, key challenges remain: 

traffic networks are inherently non-Euclidean, with road 

segments and intersections forming irregular graphs rather 

than grids; sensor data is often sparse or missing; and models 

trained in one domain may not generalize well under shifting 

traffic patterns. These limitations highlight the need for 

approaches that jointly capture temporal sequences and 

network topology while remaining robust to incomplete and 

heterogeneous data. This gap is filled by the development of 

Graph Convolutional Networks (GCNs),[8] which allow 
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representation learning on graph-structured data directly. The 

resulting GCN-GRU hybrid models can concurrently capture 

temporal dynamics of traffic flow and spatial dependencies 

across irregular road networks when combined with 

recurrent architectures like GRU. GCN-GRU is positioned as 

one of the most promising methods for junction-level traffic 

prediction by this synthesis. To map the research landscape, 

synthesize recent advancements, and critically compare 

GCN-GRU approaches against CNN and LSTM/GRU 

models, the study performs a Systematic Literature Review 

(SLR) in conjunction with bibliometric analysis. This review 

offers a comprehensive view of the current state of research 

and potential future directions in junction-level traffic 

prediction by combining quantitative bibliometric mapping 

with qualitative synthesis.[9] 

The development of traffic prediction methods 

demonstrates a distinct paradigm shift from statistical to deep 

learning. For short-term prediction, classical models like 

ARIMA and Kalman filtering provided interpretable 

answers, but they were unable to keep up with the growing 

complexity of real-world, multi-source traffic data. Deep 

learning models have been adopted more quickly as a result 

of the growth of large-scale traffic sensing infrastructure, 

which includes GPS, loop detectors, and IoT-enabled vehicle 

sensors. Although CNN-based models excel at capturing 

spatial dependencies, they are unable to accurately depict 

irregular urban road networks due to their reliance on grid-

structured inputs. In contrast, LSTM and GRU models are 

very good at predicting temporal sequences and identifying 

long-term dependencies in traffic flow, but they are unable to 

explicitly model the spatial relationships between 

intersections. By directly learning spatial representations 

from graph-structured road networks, GCN-based 

techniques overcome this gap. The GCN-GRU hybrid 

architecture is specifically designed for junction-level 

prediction tasks by combining gated recurrent units for 

temporal sequence modeling with graph convolution for 

spatial correlation learning.[10] 

To illustrate this methodological evolution, the review 

summarizes the comparative strengths and weaknesses of 

CNN, LSTM/GRU, and GCN-GRU models in traffic flow 

prediction. This tabular synthesis demonstrates how each 

model family addresses certain challenges while leaving 

others unresolved, thereby highlighting the rationale for 

GCN-GRU hybrid approaches. 

2. Methodology 

This systematic review article that analyzes existing studies 

on GCN-GRU-based traffic flow prediction and compares 

them with CNN and LSTM/GRU models. To ensure 

methodological transparency and reproducibility, this review 

adheres to the PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) framework. Using 

keyword combinations like "traffic flow prediction," 

"junction-level traffic," "GCN," "GRU," "CNN," and 

"LSTM," extensive searches were carried out in Web of 

Science, Scopus, and IEEE Xplore. A total of 432 studies 

published between 2017 and 2025 were found in the first 

search. 87 papers were kept for the final synthesis after 

duplicates were eliminated and relevance was checked using 

keywords, abstracts, and titles.[38] 

In parallel, bibliometric mapping was carried out to 

examine citation clusters, co-authorship patterns, and 

keyword co-occurrence using VOSviewer. A thorough grasp 

of the research landscape is ensured by this dual approach, 

which combines quantitative breadth and qualitative depth 

through systematic literature synthesis backed by 

bibliometric analysis. 

Additionally, Lens.org's dataset-level statistics, which 

included 3,846 scholarly works with over 97,000 citations, 

315 works cited by patents, and 579 citing patents, validated 

the scope and significance of this field of study. This 

highlights the field's industrial and applied significance in 

addition to its academic maturity.[39] 

 

2.1 Systematic review approach 

The PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) framework is followed in this 

review, guaranteeing methodological rigor, reproducibility, 

and transparency. Web of Science, Scopus, and IEEE Xplore 

were the databases that were searched. 

Keywords like "traffic flow prediction," "junction-level 

traffic," "GCN," "GRU," "CNN," and "LSTM" were 

combined in the search strategy. 

• The screening procedure 432 studies (2017–2024) were 

initially retrieved. 

• 87 papers were kept for synthesis after duplicates were 

eliminated and titles, abstracts, and keywords were 

screened.[40] 

Table 1: Foundational AI / General models. 

Year Authors Model / Method Application Key Contributions & Limitations 

1986 Rumelhart et al. Backpropagation 

Neural Network 

General AI 

foundation 

Backpropagation was introduced, enabling deep model 

training, but initially limited to time-series data.[11] 

1991 Elman Simple Recurrent 

Network (SRN) 

Sequential 

learning 

Early RNN for sequences; struggled with long-term 

dependencies.[12] 

1997 Hochreiter & 

Schmidhuber 

LSTM Sequential 

modeling 

Solved vanishing gradient; laid groundwork for time-

series prediction, including traffic.[13] 

2016 Goodfellow et al. Deep Learning (MIT 

Press) 

General Full DL reference; introduced CNN/LSTM concepts 

applied later to traffic modeling.[14] 
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Table 2: Traffic-specific models / Applications. 

Year Authors Model / Method Application Key Contributions & Limitations 

2003 Williams & Hoel Seasonal ARIMA Traffic forecasting Easy-to-understand statistical method; poor 

with nonlinear patterns.[15] 

2006 Zivot & Wang VAR Multivariate 

forecasting 

Limited for large, nonlinear traffic systems; 

captured time-series dependencies.[16] 

2014 Bruna et al. Spectral GCN Graph learning Introduced graph convolutions, later adapted to 

spatiotemporal traffic.[17] 

2014 Johansson et al. Random Forest + 

Conformal 

Prediction 

Regression 

forecasting 

Added uncertainty estimation; not optimized 

for dynamic traffic data.[18] 

2015 Kumar & Vanajakshi Seasonal ARIMA 

(limited data) 

Short-term traffic 

prediction 

Improved ARIMA, but could not capture 

spatiotemporal dynamics.[19] 

2015 Chen et al. SVR + Adaptive 

GA 

Tourist flow 

prediction 

ML showed efficacy; lacked deep 

spatiotemporal modeling.[20] 

2020 Chen et al. Deep Learning 

(IoV) 

Traffic flow (IoV) DL on IoT-based traffic; challenges in real-time 

deployment.[21] 

2020 Guo & Yuan Graph Attention 

Temporal ConvNet 

Traffic speed Early GNN for traffic; combined graph and 

temporal convolution.[22] 

2020 Li & Xu ML approaches Traffic prediction 

(ITS) 

Highlighted importance of deep learning for 

ITS.[23] 

2020 Meena et al. ML models ITS Basic ML for traffic; lacked spatiotemporal 

depth.[24] 

2020 Manibardo et al. Online Learning Congestion 

prediction 

Adaptive models less accurate than DL.[25] 

2021 Shu et al. Improved GRU Short-term 

prediction 

Enhanced GRU; lacked graph structure.[26] 

2021 Tang et al. Attention-LSTM + 

GA 

License plate data High accuracy; computationally heavy.[27] 

2021 Wang et al. LSTM Encoder–

Decoder 

Long-term traffic Strong temporal modeling; no explicit spatial 

learning.[28] 

2021 Xing et al. Dynamic GCN Point cloud 

mining 

Extended GCN to dynamic graphs; relevant for 

spatial learning but not traffic-specific.[29] 

2022 Zafar et al. LSTM-GRU 

Hybrid 

Urban speed 

prediction 

Integrated heterogeneous sources; lacked graph 

structure.[30] 

2022 Zheng et al. GCN-GAN Traffic flow 

prediction 

Computationally intensive; GCN+GAN 

Hybrid.[31] 

2022 Yin et al. Survey of DL in 

Traffic 

Review Spatiotemporal hybrid taxonomy for traffic.[32] 

2022 Modi et al. ML algorithms 

review 

ITS Focused on real-time traffic management.[33] 

2023 Xing et al. Dynamic GCN 

(chemical reactor) 

Point cloud Method applicable to traffic; geometric feature 

learning.[34] 

2025 Singh et al. CNN-GRU-LSTM 

hybrid 

Traffic flow Combines spatial and temporal models; trend 

toward complex approaches.[35] 

2025 Fang et al. STPFormer Traffic dynamics Integrates temporal encoding, spatial sequence 

learning, graph matching, and attention; strong 

generalization.[36] 

2025 Wu et al. SFADNet Traffic flow Fused graph with cross-attention; outperforms 

state-of-the-art on large datasets.[37] 

2.2 Bibliometric mapping and data insights 

Bibliometric analysis tool: VOSviewer. 

Dimensions analyzed: 

• Co-authorship patterns. 

• Keyword co-occurrence. 

• Citation clusters. 

Dataset-level statistics (Lens.org): 

• 3,846 scholarly works retrieved. 
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• 97,000+ total citations. 

• 315 works cited by patents. 

• 579 citing patents, highlighting industrial adoption. 

Significance: Confirms both academic maturity and practical 

relevance of junction-level traffic prediction research.[41] 

 

2.3 Threats to validity 

This study may be affected by selection bias, as the datasets 

used for evaluation may not fully represent all traffic 

conditions or geographic regions. Dataset coverage is 

another potential limitation, since the chosen datasets may 

not include variations across different times, seasons, or 

unusual traffic events. These factors could limit the 

generalizability of the proposed model to other traffic 

environments. Future work should include more diverse 

datasets to address these threats and strengthen the validity 

of the findings.[42] 

 

2.4 Research questions 

Recent advances in deep learning have significantly 

transformed junction-level traffic flow prediction, evolving 

from traditional time-series models to sophisticated 

spatiotemporal architectures. In this context, GCN-GRU 

hybrid models have emerged as a powerful alternative to 

standalone CNN or LSTM/GRU approaches by jointly 

capturing spatial dependencies and temporal dynamics. 

Bibliometric analysis reveals evolving trends in authorship, 

prevalent keywords, and citation patterns, reflecting the 

growing interest in enhanced and attention-based models. 

Despite these advances, research gaps remain in model 

generalization, explainability, and real-time deployment, 

pointing to promising future directions for further 

exploration.[43,44] 

3. Results of bibliometric analysis 

3.1 Co-authorship network  

The co-authorship analysis shows that Chinese and U.S. 

institutions have made the most contributions to the field of 

GCN-based traffic prediction. There are many strong 

national research clusters, but there aren't many international 

collaborations. This means that there needs to be more cross-

continental engagement and data sharing. This kind of 

collaboration would make it easier to use models in different 

cities. 

While the co-occurrence network highlights thematic 

concentrations and methodological trends, the underlying co-

authorship patterns reveal relatively weak international 

linkages. This limited cross-regional collaboration may 

restrict access to diverse traffic datasets, which are essential 

for validating models across different urban contexts. 

Without stronger dataset sharing and global cooperation, the 

transferability of traffic prediction models across cities 

remains constrained, potentially reducing their effectiveness 

in heterogeneous real-world environments. 

 

3.2 Keyword co-occurrence map 

The keyword co-occurrence mapping shows three main 

research groups: 

Cluster 1: GCN, graph neural networks, and modeling of 

space and time. 

Group 2: LSTM, GRU, and predicting time series. 

Cluster 3: CNN, modeling based on images, and a grid-based 

representation. 

This shows that there has been a big change from CNN and 

RNN models to graph-based architectures. The increasing 

popularity of GCN-GRU keywords is a clear sign that this 

model is becoming the best way to predict junction levels.

 
Fig. 1: Keyword co-occurrence network visualization. 
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Fig. 2: Keyword co-occurrence overlay visualization. 

 

Fig. 2 shows the keyword co-occurrence overlay 

visualization, highlighting how research emphasis has 

shifted from broader themes such as “deep learning,” 

“application,” and “survey” toward more recent and 

specialized topics like “graph convolutional network 

(GCN),” “dependency,” and “spatial correlation” between 

2021 and 2023. This progression reflects the field’s 

movement from general methodological foundations to 

advanced modeling of non-Euclidean traffic structures. 

However, the fragmented distribution of keywords across 

clusters also indicates limited cross-regional integration, 

reinforcing the finding from co-authorship analysis that weak 

international collaboration may hinder dataset sharing and 

reduce the transferability of models across diverse urban 

contexts. 

 

4.3 Citation clusters 

Citation analysis identifies seminal GCN-based models like 

DCRNN and ST-GCN as central nodes, which are heavily 

cited in later research. Recent studies that combine GCN with 

GRU show an increase in citation momentum, which shows 

that more people are recognizing their predictive power. In 

contrast, models that only use CNN and LSTM show fewer 

citations, which means they are becoming less important in 

cutting-edge traffic prediction research. 

Fig. 3 presents the keyword density visualization, where 

brighter areas highlight the most frequently cited and co-

occurring terms such as “graph convolutional network 

(GCN),” “graph,” “deep learning,” and “application.” These 

dense regions indicate the dominant methodological focus of 

recent research, with strong emphasis on graph-based 

modeling and spatiotemporal dependencies. However, the 

density remains uneven across clusters, reflecting the 

influence of a limited number of research hubs. Combined 

with the weak international linkages observed in co-

authorship networks, this suggests barriers to dataset sharing 

and knowledge transfer across regions, potentially 

constraining the generalizability of models to cities with 

different traffic infrastructures and mobility patterns. 

Collaboration patterns in traffic prediction research, such as 

combining graph-based spatial learning with recurrent 

temporal models (e.g., CNN-GRU-LSTM hybrids or GCN-

based approaches), enhance model adaptability to diverse 

datasets. Models trained using multi-source data or 

collaborative frameworks generally exhibit better 

transferability across different traffic environments. This 

suggests that integrating diverse collaboration patterns 

improves robustness when applying models to unseen traffic 

scenarios. 

 

5. Comparative analysis of CNN, LSTM/GRU, and GCN-

GRU 

When it comes to junction-level traffic prediction tasks, the 

comparative evidence clearly favours GCN-GRU models. 

Although CNNs are good at modeling spatial features, their 

ability to do so is constrained by the presumption of  

https://gr-journals.com/about_gr.php
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Fig. 3: Keyword density visualization. *(Node Size: Frequency of Keywords | Edge Thickness: Co-occurrence of Strength | 

Color Gradient (Blue →Yellow): Year (2021→ 2023). 

Table 3: Analysis of CNN, LSTM/GRU, and GCN-GRU. 

Model Strengths Limitations Suitability for Junction-Level 

Prediction 

CNN Effective with grid-based traffic data, 

it captures spatial features. 

Limited for dynamic 

junctions and weak at 

temporal dependencies 

Moderate 

LSTM/GRU Strong sequence modeling and 

exceptional long-term temporal 

dependency 

Not good at finding spatial 

correlations; uses a lot of 

computing power 

Moderate 

GCN-GRU Combines temporal (sequence) and 

spatial (graph) learning; it is scalable 

to intricate road networks. 

Needs big labeled 

datasets; hard to 

understand 

High 

(*Detailed benchmark results are shown in Table 4; values may vary due to differences in datasets, traffic conditions, and 

evaluation protocols. Researcher-Generated Analysis of CNN, LSTM/GRU, and GCN-GRU Models.) 

 

Euclidean grid structures. Road network topology is not 

explicitly taken into account by LSTM and GRU, despite 

their superiority at capturing sequential dependencies. 

By combining the advantages of both paradigms, GCN-

GRU hybrids achieve improved accuracy and reduced 

RMSE on benchmark datasets like METR-LA and PEMS-

BAY. Importantly, because graph-based representations 

enable information to spread among connected nodes, GCN-

GRU exhibits resilience against missing data and sensor 

failure. GCN-GRU is a strong option for scalable, practical 

ITS deployment because of these benefits. 

 

6. Discussion and research gaps 

The review indicates out a number of important research 

gaps. First, even though GCN-GRU models perform better 

than their predecessors, model interpretability is still a major 

problem. The majority of GCN-GRU architectures operate as 

opaque black boxes, despite the fact that transportation 

authorities need clear and understandable models to inform 

operational choices. Second, there are still problems with 

computational scalability because accurate yet lightweight 

models are needed for real-time deployment in big urban 

networks. Third, there are questions regarding 

generalizability to developing nations with distinct traffic 

dynamics due to the dependence on datasets from a small 

number of regions (most notably China and the U.S.). 

https://gr-journals.com/about_gr.php
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Table 4: Benchmarking of traffic prediction models. 

Model / Method RMSE Range MAE Range Caveats 

Seasonal ARIMA  15–25 10–18 Limited to linear patterns; poor for nonlinear dynamics 

LSTM  10–18 7–12 Strong temporal modeling, lacks explicit spatial awareness 

GCN-based models  9–16 6–11 Strong spatial modeling, needs robust graphs 

CNN-GRU-LSTM hybrid  7–13 5–9 Strong spatiotemporal modeling, computationally heavier 

STPFormer  6–12 4–8 Excellent generalization, complex architecture 

SFADNet 5–11 4–7 Robust across datasets, requires cross-attention fusion 

 *Researcher-generated comparative performance of traffic flow prediction models. 

 

The integration of multi-modal data sources represents 

another gap. Current models frequently only use data on 

traffic flow or speed, but weather, ride-sharing, and event 

data could all be added to improve junction-level prediction. 

The synergy of GCN-GRU with edge computing or federated 

learning, which are essential for real-time ITS applications 

under data privacy constraints, has only been briefly 

examined in a few studies. 

Explainability techniques such as SHAP (SHapley 

Additive Explanations) and LIME (Local Interpretable 

Model-agnostic Explanations) can identify the relative 

importance of spatiotemporal features in traffic prediction. 

Their deployment enhances model transparency, improves 

trust among end-users, and assists in diagnosing model 

failures. In real-world traffic systems, such explainability 

methods support informed decision-making, regulatory 

compliance, and system debugging. 

 

7. Conclusion and future scope 

GCN-GRU hybrids have emerged as the cutting-edge 

paradigm for junction-level traffic flow prediction, as 

evidenced by this comprehensive literature review and 

bibliometric mapping. Although it sacrifices interpretability 

and computational efficiency, GCN-GRU is more adaptive to 

irregular road networks and multi-junction interactions than 

CNN and LSTM/GRU. Expanding cross-regional studies, 

facilitating scalable real-time deployment, and improving 

model interpretability should be the main goals of future 

research. A promising area is the combination of GCN-GRU 

with edge computing frameworks, reinforcement learning, 

and attention mechanisms. Incorporating these models into 

smart city infrastructures can also lead to better urban 

mobility, less environmental impact, and proactive 

congestion management. In conclusion, the evidence clearly 

indicates that GCN-GRU represents the next step forward for 

intelligent transportation systems, providing a route to more 

precise, reliable, and scalable solutions for future cities, even 

though CNN and LSTM/GRU established the groundwork 

for deep learning in traffic prediction. 
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