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Abstract

in the review.

For contemporary intelligent transportation systems, precise junction-level traffic flow prediction is crucial. Models like Long
Short-Term Memory networks (LSTM), Convolutional Neural Networks (CNN), and Gated Recurrent Units (GRU) have been
thoroughly researched since deep learning gained popularity. The ability to capture both spatial and temporal dependencies
in traffic data has recently been demonstrated by combining Graph Convolutional Networks (GCN) with GRU. This study
combines comparative synthesis of CNN, LSTM/GRU, and GCN-GRU approaches with bibliometric mapping to present a
systematic literature review (SLR) of recent works on traffic flow prediction. Three viewpoints—keyword co-occurrence, co-
authorship networks, and citation impact clusters—were mapped using VOS viewer bibliometric analysis. In comparison to
conventional CNN and LSTM/GRU, our synthesis shows that GCN-GRU offers notable gains in processing complex urban
traffic junction data. Open issues like scalability, interpretability, and deployment in actual smart city platforms are also noted
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1. Introduction

Urban traffic congestion is one of the most pressing
challenges of the twenty-first century, impacting quality of
life, economic productivity, mobility, and environmental
sustainability.l'?l Accurate traffic flow forecasting has
therefore become central to Intelligent Transportation
Systems (ITS), particularly at junctions where multiple flows
converge and diverge, creating bottlenecks and
congestion.># Junction-level prediction is especially critical
since these points concentrate the complexity of road
networks and often determine overall traffic dynamics.F
Traditional models such as regression-based methods,
Kalman filters, and ARIMA struggled with the nonlinear and

high-dimensional nature of modern traffic data.[®! The
learning method offered advances through CNNs for spatial
feature extraction and RNN variants (LSTM, GRU) for
temporal dynamics.>”! However, key challenges remain:
traffic networks are inherently non-Euclidean, with road
segments and intersections forming irregular graphs rather
than grids; sensor data is often sparse or missing; and models
trained in one domain may not generalize well under shifting
traffic patterns. These limitations highlight the need for
approaches that jointly capture temporal sequences and
network topology while remaining robust to incomplete and
heterogeneous data. This gap is filled by the development of
Graph Convolutional Networks (GCNs),®! which allow
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representation learning on graph-structured data directly. The
resulting GCN-GRU hybrid models can concurrently capture
temporal dynamics of traffic flow and spatial dependencies
across irregular road networks when combined with
recurrent architectures like GRU. GCN-GRU is positioned as
one of the most promising methods for junction-level traffic
prediction by this synthesis. To map the research landscape,
synthesize recent advancements, and critically compare
GCN-GRU approaches against CNN and LSTM/GRU
models, the study performs a Systematic Literature Review
(SLR) in conjunction with bibliometric analysis. This review
offers a comprehensive view of the current state of research
and potential future directions in junction-level traffic
prediction by combining quantitative bibliometric mapping
with qualitative synthesis.’

The development of traffic prediction methods
demonstrates a distinct paradigm shift from statistical to deep
learning. For short-term prediction, classical models like
ARIMA and Kalman filtering provided interpretable
answers, but they were unable to keep up with the growing
complexity of real-world, multi-source traffic data. Deep
learning models have been adopted more quickly as a result
of the growth of large-scale traffic sensing infrastructure,
which includes GPS, loop detectors, and loT-enabled vehicle
sensors. Although CNN-based models excel at capturing
spatial dependencies, they are unable to accurately depict
irregular urban road networks due to their reliance on grid-
structured inputs. In contrast, LSTM and GRU models are
very good at predicting temporal sequences and identifying
long-term dependencies in traffic flow, but they are unable to
explicitly model the spatial relationships between
intersections. By directly learning spatial representations
from graph-structured road networks, GCN-based
techniques overcome this gap. The GCN-GRU hybrid
architecture is specifically designed for junction-level
prediction tasks by combining gated recurrent units for
temporal sequence modeling with graph convolution for
spatial correlation learning.!'”’

To illustrate this methodological evolution, the review
summarizes the comparative strengths and weaknesses of
CNN, LSTM/GRU, and GCN-GRU models in traffic flow
prediction. This tabular synthesis demonstrates how each
model family addresses certain challenges while leaving
others unresolved, thereby highlighting the rationale for
GCN-GRU hybrid approaches.

2. Methodology

This systematic review article that analyzes existing studies
on GCN-GRU-based traffic flow prediction and compares
them with CNN and LSTM/GRU models. To ensure
methodological transparency and reproducibility, this review
adheres to the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) framework. Using
keyword combinations like "traffic flow prediction,"
"junction-level traffic,” "GCN," "GRU," "CNN," and
"LSTM," extensive searches were carried out in Web of
Science, Scopus, and IEEE Xplore. A total of 432 studies
published between 2017 and 2025 were found in the first
search. 87 papers were kept for the final synthesis after
duplicates were eliminated and relevance was checked using
keywords, abstracts, and titles.[3!

In parallel, bibliometric mapping was carried out to
examine citation clusters, co-authorship patterns, and
keyword co-occurrence using VOSviewer. A thorough grasp
of the research landscape is ensured by this dual approach,
which combines quantitative breadth and qualitative depth
through systematic literature synthesis backed by
bibliometric analysis.

Additionally, Lens.org's dataset-level statistics, which
included 3,846 scholarly works with over 97,000 citations,
315 works cited by patents, and 579 citing patents, validated
the scope and significance of this field of study. This
highlights the field's industrial and applied significance in
addition to its academic maturity.?”!

2.1 Systematic review approach

The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) framework is followed in this
review, guaranteeing methodological rigor, reproducibility,
and transparency. Web of Science, Scopus, and IEEE Xplore
were the databases that were searched.
Keywords like "traffic flow prediction,
traffic," "GCN," "GRU," "CNN," and
combined in the search strategy.

The screening procedure 432 studies (2017-2024) were
initially retrieved.

e 87 papers were kept for synthesis after duplicates were
eliminated and titles, abstracts, and keywords were
screened. !

n "

'junction-level
"LSTM" were

Table 1: Foundational Al / General models.

Year  Authors Model / Method Application Key Contributions & Limitations

1986 Rumelhart et al. Backpropagation General Al Backpropagation was introduced, enabling deep model
Neural Network foundation training, but initially limited to time-series data.!!!]

1991 Elman Simple Recurrent Sequential Early RNN for sequences; struggled with long-term
Network (SRN) learning dependencies.[?]

1997 Hochreiter & LSTM Sequential Solved vanishing gradient; laid groundwork for time-

Schmidhuber modeling series prediction, including traffic.!'3]

2016  Goodfellow et al. Deep Learning (MIT General Full DL reference; introduced CNN/LSTM concepts

Press) applied later to traffic modeling.!'4]
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Table 2: Traffic-specific models / Applications.

Year Authors Model / Method Application Key Contributions & Limitations

2003 Williams & Hoel Seasonal ARIMA Traffic forecasting Easy-to-understand statistical method; poor
with nonlinear patterns.[”!

2006 Zivot & Wang VAR Multivariate Limited for large, nonlinear traffic systems;

forecasting captured time-series dependencies.[!®!
2014 Bruna ef al. Spectral GCN Graph learning Introduced graph convolutions, later adapted to
spatiotemporal traffic.['”]
2014 Johansson et al. Random Forest + Regression Added uncertainty estimation; not optimized
Conformal forecasting for dynamic traffic data.l'8]
Prediction

2015 Kumar & Vanajakshi Seasonal ARIMA Short-term traffic ~ Improved ARIMA, but could not capture
(limited data) prediction spatiotemporal dynamics.[!"]

2015 Chen et al. SVR + Adaptive Tourist flow ML showed efficacy; lacked deep
GA prediction spatiotemporal modeling.>’]

2020 Chen et al. Deep Learning Traffic flow (IoV) DL on IoT-based traffic; challenges in real-time
(IoV) deployment.[!]

2020 Guo & Yuan Graph Attention Traffic speed Early GNN for traffic; combined graph and
Temporal ConvNet temporal convolution.??]

2020 Li & Xu ML approaches Traffic prediction ~ Highlighted importance of deep learning for

aTs) ITS.123

2020 Meena et al. ML models ITS Basic ML for traffic; lacked spatiotemporal
depth.[24

2020 Manibardo et al. Online Learning Congestion Adaptive models less accurate than DL.[2*

prediction

2021 Shu et al. Improved GRU Short-term Enhanced GRU; lacked graph structure. 2!

prediction

2021 Tang et al. Attention-LSTM +  License plate data ~ High accuracy; computationally heavy.[?”]

GA
2021 Wang et al. LSTM Encoder— Long-term traffic ~ Strong temporal modeling; no explicit spatial
Decoder learning.?8]

2021 Xing et al. Dynamic GCN Point cloud Extended GCN to dynamic graphs; relevant for

mining spatial learning but not traffic-specific.*’]

2022 Zafar et al. LSTM-GRU Urban speed Integrated heterogeneous sources; lacked graph

Hybrid prediction structure. 3%

2022 Zheng et al. GCN-GAN Traftic flow Computationally intensive; GCN+GAN

prediction Hybrid.[?1]

2022 Yin et al. Survey of DL in Review Spatiotemporal hybrid taxonomy for traffic.[3%!

Traffic

2022 Modi et al. ML algorithms ITS Focused on real-time traffic management.**!

review

2023 Xing et al. Dynamic GCN Point cloud Method applicable to traffic; geometric feature

(chemical reactor) learning.(34]

2025 Singh et al. CNN-GRU-LSTM  Traffic flow Combines spatial and temporal models; trend

hybrid toward complex approaches.’!

2025 Fang et al. STPFormer Traffic dynamics Integrates temporal encoding, spatial sequence
learning, graph matching, and attention; strong
generalization.13%)

2025 Wu et al. SFADNet Traffic flow Fused graph with cross-attention; outperforms

state-of-the-art on large datasets.l>”)

2.2 Bibliometric mapping and data insights
Bibliometric analysis tool: VOSviewer.
Dimensions analyzed:

e (Co-authorship patterns.

Y GR Scholastic

G W i

e Keyword co-occurrence.

o C(Citation clusters.

Dataset-level statistics (Lens.org):
e 3,846 scholarly works retrieved.
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e 97,000+ total citations.

e 315 works cited by patents.

e 579 citing patents, highlighting industrial adoption.
Significance: Confirms both academic maturity and practical
relevance of junction-level traffic prediction research.!!

2.3 Threats to validity

This study may be affected by selection bias, as the datasets
used for evaluation may not fully represent all traffic
conditions or geographic regions. Dataset coverage is
another potential limitation, since the chosen datasets may
not include variations across different times, seasons, or
unusual traffic events. These factors could limit the
generalizability of the proposed model to other traffic
environments. Future work should include more diverse
datasets to address these threats and strengthen the validity
of the findings.*!

2.4 Research questions

Recent advances in deep learning have significantly
transformed junction-level traffic flow prediction, evolving
from traditional time-series models to sophisticated
spatiotemporal architectures. In this context, GCN-GRU
hybrid models have emerged as a powerful alternative to
standalone CNN or LSTM/GRU approaches by jointly
capturing spatial dependencies and temporal dynamics.
Bibliometric analysis reveals evolving trends in authorship,
prevalent keywords, and citation patterns, reflecting the
growing interest in enhanced and attention-based models.
Despite these advances, research gaps remain in model
generalization, explainability, and real-time deployment,
pointing to promising future directions for further
exploration.[*344]

@ LSTM tor Traffic Research traffiovolume

@ GCN for Traffic Research <
o grumodel Istm model ®
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A\ g -

@ Deep Learning

3. Results of bibliometric analysis

3.1 Co-authorship network

The co-authorship analysis shows that Chinese and U.S.
institutions have made the most contributions to the field of
GCN-based traffic prediction. There are many strong
national research clusters, but there aren't many international
collaborations. This means that there needs to be more cross-
continental engagement and data sharing. This kind of
collaboration would make it easier to use models in different
cities.

While the co-occurrence network highlights thematic
concentrations and methodological trends, the underlying co-
authorship patterns reveal relatively weak international
linkages. This limited cross-regional collaboration may
restrict access to diverse traffic datasets, which are essential
for validating models across different urban contexts.
Without stronger dataset sharing and global cooperation, the
transferability of traffic prediction models across cities
remains constrained, potentially reducing their effectiveness
in heterogeneous real-world environments.

3.2 Keyword co-occurrence map

The keyword co-occurrence mapping shows three main
research groups:

Cluster 1: GCN, graph neural networks, and modeling of
space and time.

Group 2: LSTM, GRU, and predicting time series.

Cluster 3: CNN, modeling based on images, and a grid-based
representation.

This shows that there has been a big change from CNN and
RNN models to graph-based architectures. The increasing
popularity of GCN-GRU keywords is a clear sign that this
model is becoming the best way to predict junction levels.
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Fig. 1: Keyword co-occurrence network visualization.
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Fig. 2: Keyword co-occurrence overlay visualization.

Fig. 2 shows the keyword co-occurrence overlay
visualization, highlighting how research emphasis has
shifted from broader themes such as “deep learning,”
“application,” and “survey” toward more recent and
specialized topics like “graph convolutional network
(GCN),” “dependency,” and “spatial correlation” between
2021 and 2023. This progression reflects the field’s
movement from general methodological foundations to
advanced modeling of non-Euclidean traffic structures.
However, the fragmented distribution of keywords across
clusters also indicates limited cross-regional integration,
reinforcing the finding from co-authorship analysis that weak
international collaboration may hinder dataset sharing and
reduce the transferability of models across diverse urban
contexts.

4.3 Citation clusters
Citation analysis identifies seminal GCN-based models like
DCRNN and ST-GCN as central nodes, which are heavily
cited in later research. Recent studies that combine GCN with
GRU show an increase in citation momentum, which shows
that more people are recognizing their predictive power. In
contrast, models that only use CNN and LSTM show fewer
citations, which means they are becoming less important in
cutting-edge traffic prediction research.

Fig. 3 presents the keyword density visualization, where
brighter areas highlight the most frequently cited and co-
occurring terms such as “graph convolutional network

Y GR Scholastic
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(GCN),” “graph,” “deep learning,” and “application.” These
dense regions indicate the dominant methodological focus of
recent research, with strong emphasis on graph-based
modeling and spatiotemporal dependencies. However, the
density remains uneven across clusters, reflecting the
influence of a limited number of research hubs. Combined
with the weak international linkages observed in co-
authorship networks, this suggests barriers to dataset sharing
and knowledge transfer across regions, potentially
constraining the generalizability of models to cities with
different traffic infrastructures and mobility patterns.
Collaboration patterns in traffic prediction research, such as
combining graph-based spatial learning with recurrent
temporal models (e.g., CNN-GRU-LSTM hybrids or GCN-
based approaches), enhance model adaptability to diverse
datasets. Models trained using multi-source data or
collaborative  frameworks generally exhibit better
transferability across different traffic environments. This
suggests that integrating diverse collaboration patterns
improves robustness when applying models to unseen traffic
scenarios.

5. Comparative analysis of CNN, LSTM/GRU, and GCN-
GRU

When it comes to junction-level traffic prediction tasks, the
comparative evidence clearly favours GCN-GRU models.
Although CNNs are good at modeling spatial features, their

ability to do so is constrained by the presumption of
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Table 3: Analysis of CNN, LSTM/GRU, and GCN-GRU.

Model Strengths Limitations Suitability for Junction-Level
Prediction
CNN Effective with grid-based traffic data, Limited for dynamic Moderate
it captures spatial features. junctions and weak at
temporal dependencies
LSTM/GRU  Strong sequence modeling and Not good at finding spatial Moderate
exceptional long-term temporal correlations; uses a lot of
dependency computing power
GCN-GRU  Combines temporal (sequence) and Needs big labeled High
spatial (graph) learning; it is scalable  datasets; hard to
to intricate road networks. understand

(*Detailed benchmark results are shown in Table 4; values may vary due to differences in datasets, traffic conditions, and
evaluation protocols. Researcher-Generated Analysis of CNN, LSTM/GRU, and GCN-GRU Models.)

Euclidean grid structures. Road network topology is not
explicitly taken into account by LSTM and GRU, despite
their superiority at capturing sequential dependencies.

By combining the advantages of both paradigms, GCN-
GRU hybrids achieve improved accuracy and reduced
RMSE on benchmark datasets like METR-LA and PEMS-
BAY. Importantly, because graph-based representations
enable information to spread among connected nodes, GCN-
GRU exhibits resilience against missing data and sensor
failure. GCN-GRU is a strong option for scalable, practical
ITS deployment because of these benefits.

6. Discussion and research gaps

6 | J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025, 1, 25309

The review indicates out a number of important research
gaps. First, even though GCN-GRU models perform better
than their predecessors, model interpretability is still a major
problem. The majority of GCN-GRU architectures operate as
opaque black boxes, despite the fact that transportation
authorities need clear and understandable models to inform
operational choices. Second, there are still problems with
computational scalability because accurate yet lightweight
models are needed for real-time deployment in big urban
networks. Third, there are questions regarding
generalizability to developing nations with distinct traffic
dynamics due to the dependence on datasets from a small
number of regions (most notably China and the U.S.).
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Table 4: Benchmarking of traffic prediction models.

Model / Method RMSE Range MAE Range Caveats

Seasonal ARIMA 15-25 10-18 Limited to linear patterns; poor for nonlinear dynamics
LSTM 10-18 7-12 Strong temporal modeling, lacks explicit spatial awareness
GCN-based models 9-16 6-11 Strong spatial modeling, needs robust graphs
CNN-GRU-LSTM hybrid  7-13 5-9 Strong spatiotemporal modeling, computationally heavier
STPFormer 6-12 4-8 Excellent generalization, complex architecture

SFADNet 5-11 4-7 Robust across datasets, requires cross-attention fusion

*Researcher-generated comparative performance of traffic flow prediction models.

The integration of multi-modal data sources represents
another gap. Current models frequently only use data on
traffic flow or speed, but weather, ride-sharing, and event
data could all be added to improve junction-level prediction.
The synergy of GCN-GRU with edge computing or federated
learning, which are essential for real-time ITS applications
under data privacy constraints, has only been briefly
examined in a few studies.

Explainability techniques such as SHAP (SHapley
Additive Explanations) and LIME (Local Interpretable
Model-agnostic Explanations) can identify the relative
importance of spatiotemporal features in traffic prediction.
Their deployment enhances model transparency, improves
trust among end-users, and assists in diagnosing model
failures. In real-world traffic systems, such explainability
methods support informed decision-making, regulatory
compliance, and system debugging.

7. Conclusion and future scope

GCN-GRU hybrids have emerged as the cutting-edge
paradigm for junction-level traffic flow prediction, as
evidenced by this comprehensive literature review and
bibliometric mapping. Although it sacrifices interpretability
and computational efficiency, GCN-GRU is more adaptive to
irregular road networks and multi-junction interactions than
CNN and LSTM/GRU. Expanding cross-regional studies,
facilitating scalable real-time deployment, and improving
model interpretability should be the main goals of future
research. A promising area is the combination of GCN-GRU
with edge computing frameworks, reinforcement learning,
and attention mechanisms. Incorporating these models into
smart city infrastructures can also lead to better urban
mobility, less environmental impact, and proactive
congestion management. In conclusion, the evidence clearly
indicates that GCN-GRU represents the next step forward for
intelligent transportation systems, providing a route to more
precise, reliable, and scalable solutions for future cities, even
though CNN and LSTM/GRU established the groundwork
for deep learning in traffic prediction.
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