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Abstract

Magic Learn-DrawlnAir is an Al-powered educational tool that enables users to draw, solve equations, control presentations,
stream drawings via virtual camera, and interact through a real-time 3D avatar using only hand gestures and facial tracking,
eliminating the need for physical input devices. The system integrates MediaPipe for real-time hand tracking, OpenCV for
virtual canvas rendering, and Streamlit for a user-friendly web interface. A unique aspect is the use of Google Gemini API,
which analyzes gesture-based drawings to solve mathematical expressions or describe creative visuals. The platform also
supports gesture-based navigation of PowerPoint or PDF slides, making it highly suitable for virtual teaching and learning
environments. The platform supports gesture-based navigation and annotation of PowerPoint or PDF slides, virtual camera
output for drawing and erasing in OBS Studio, Google Meet, and Zoom, and a 3D avatar using MediaPipe FaceMesh for
immersive interaction. Designed to be hardware-independent and cost-effective, the system enhances accessibility and
creativity in education. It offers a futuristic learning experience through intuitive gesture control, facial tracking, and Al-
enhanced understanding. Initial testing confirms the system's efficiency in gesture recognition, drawing responsiveness, and

Al analysis, making it a valuable contribution to smart education and human-computer interaction.
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1. Introduction

The rapid evolution of technology has transformed education
from traditional classroom settings to digital and remote
learning environments. Digital education platforms have
become central to modern pedagogy, especially after the
global shift toward online instruction.!'? Studies have shown
that technology-enhanced tools such as interactive
smartboards, styluses, and touchscreen interfaces
significantly improve engagement and participation in digital
classrooms.l However, these solutions often require
specialized and costly hardware, limiting accessibility for
learners and educators in resource-constrained settings.[® As
the demand for affordable and inclusive educational
technologies grows, researchers have begun exploring

alternative modes of human—computer interaction that
eliminate physical dependencies.’! Among these, gesture-
based systems have emerged as an intuitive and natural
method of interaction that bridges the gap between physical
and digital learning spaces.!'>!!] Prior research demonstrates
that hand and body gestures can effectively support
contactless control, interactive visualization, and immersive
engagement in educational and creative domains.!'>!3 Such
systems provide a hands-free interface that can adapt to
diverse user needs-ranging from virtual classrooms to
assistive applications-thereby promoting inclusivity and
accessibility. Gesture recognition technologies, when
combined with real-time computer vision and Al analysis,
enable novel modes of user interaction that closely mimic

DOIL: https://doi.org/10.64189/ict.25310
© The Author(s) 2025

This article is licensed under Creative Commons Attribution NonCommercial 4.0 International (CC-BY-NC 4.0)

J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025, 1,25310| 1


https://doi.org/10.64189/ict.25310
https://creativecommons.org/licenses/by-nc/4.0/deed.en

Research article

Volume 1 Issue 2 (September 2025)

natural human communication.'! Building upon this
foundation, the present study introduces Magic Learn —
DrawInAir, an Al-powered, gesture-based learning and
interaction system that transforms an ordinary webcam into
a multifunctional input device. The system integrates
MediaPipe for real-time hand and face tracking, OpenCV for
virtual drawing and erasing, and the Google Gemini API for
intelligent content interpretation such as equation
recognition and analysis. Users can control PowerPoint and
PDF presentations, sketch and erase freely in the air, and
even stream their virtual drawings to OBS Studio, Google
Meet, and Zoom. A 3D facial avatar, rendered through
MediaPipe FaceMesh, adds an expressive dimension to user
presence. Unlike conventional hardware-dependent
solutions, Magic Learn — DrawlInAuir is lightweight, portable,
and hardware-agnostic, requiring only a webcam and internet
connectivity. It serves multiple domains including online
education, EdTech presentations, creative design, and
assistive technologies for individuals with disabilities. By
employing natural hand and facial interactions, the project
aims to create a smart, inclusive, and futuristic learning
environment that democratizes access to interactive digital
education while maintaining cost-effectiveness and ease of
use.

Recent advancements in gesture recognition and hand-
pose estimation have enabled more natural human—computer
interactions across industrial, educational, and creative
domains. Vision-based methods remain among the most
widely explored approaches for real-time tracking. Bertolasi
et al. studied to assess the accuracy of HL2 in tracking hand
position and measuring kinematic hand parameters,
including joint angles and lateral pinch span (distance
between thumb and index fingertips), using its tracking
data.l's! Mulla et al.') combined open-source markerless
motion capture pipelines (MediaPipe and Anipose) to
measure 3D hand kinematics during single finger flexion—
extension using multiple cameras. Xiao ef al.'” reported
utilization wearable rings and wrist sensors to track finger
movements with high precision. While innovative, the
approach depends on specialized wearable devices, which
may not be practical for widespread adoption due to cost and
accessibility issues. Gadekallu et all'¥! propose a
convolutional neural network (CNN) optimized with Harris
Hawks Optimization for improved gesture recognition
accuracy. However, the method requires significant
computational resources and involves complex setup
processes, posing challenges for real-time applications. Sen
et all™ used to preprocess an image using binary
thresholding for gesture detection, then extracting and
segmenting the hand region. Next, the segmented images are
resized and processed in parallel by three separate CNN
models. The prediction scores from the three CNNs are
averaged to create an optimal ensemble model for the final
hand gesture recognition. Mohamed et /. summarised Al-
based methods for real-time gesture recognition, covering
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various techniques and their applications. While
comprehensive, the paper lacks practical implementation
details and focuses solely on theoretical analysis, limiting its
immediate applicability. Dupré et al. reported The TriPad
system enables drawing and user interface interaction in AR
through hand pose tracking. It performs well on flat surfaces
but is light-dependent and struggles with non-flat
environments, reducing its versatility in diverse settings.?'
Hoa et al.® reported gesture recognition using millimeter-
wave radar. This study uses millimeter-wave radar to detect
gestures on deformable objects, offering a novel approach for
flexible surfaces. However, it requires specialized radar
devices and a controlled test setup, which may limit its
practical deployment. Jonsson and Tholander explores
human-AlI collaboration in creative education, focusing on
gesture-based interactions to enhance creativity. Its scope is
limited to creative use cases, lacking general-purpose
applicability for broader gesture recognition scenarios.”?! Lei
et al. combine multiple sensors to achieve high- accuracy
hand tracking in virtual reality (VR). While effective, the
approach requires a complex hardware setup, making it less
feasible for applications without specialized equipment.*
Zhang et al.*' applies Vision Transformer (ViT) models for
recognizing static gestures with high accuracy. However, it
relies on depth cameras and is not optimized for standard
webcams, limiting its accessibility for general-purpose use
Collectively, these studies demonstrate significant
progress in gesture recognition technologies across
computer-vision, wearable, radar, and Al-driven modalities.
However, most existing systems rely on specialized sensors,
complex hardware, or computationally intensive models,
restricting their deployment in affordable, accessible
learning environments. These limitations highlight the need
for a lightweight, hardware-independent, and real-time
gesture-based framework—such as the present Magic Learn
— DrawlnAir system—which utilizes standard webcams and
Al integration to deliver intuitive, low-cost, and inclusive
interaction for education and creative applications.

2. Methodology

Fig. 1 shows the system architecture of the DrawlnAir
framework. Magic Learn - DrawInAir uses five components:
gesture tracking, canvas rendering, Al analysis, slide control,
and user interface. MediaPipe Hands tracks hand gestures in
real time. A custom YOLO and CNN model, trained on the
26K Hand Keypoint Dataset, was tested for hand tracking but
showed lower accuracy than MediaPipe Hands in visual
manual testing, so we chose MediaPipe. Gestures like Thumb
+ Index for drawing and Thumb + Middle for erasing map to
actions.

OpenCV renders drawing and erasing on a virtual canvas
stored as a NumPy array. Google Gemini API interprets
drawings to solve equations or describe visuals. PowerPoint
or PDF slides convert to images using python-pptx and
PyMuPDF, with navigation via finger gestures. MediaPipe
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FaceMesh tracks facial movements for a 3D avatar. Streamlit
provides an interface for camera streaming, file uploads,
mode selection, virtual camera output, and Al analysis. The
system uses existing models like MediaPipe Hands,
FaceMesh, and Google Gemini, avoiding custom neural
network training. Evaluation measures gesture accuracy, Al
interpretation, and user experience through testing and
feedback.

Development followed a biweekly sprint cycle, with
regular testing and iterative updates. Each functional unit
was implemented and validated independently before
integration. The application was deployed using Streamlit,
and version control was maintained via GitHub with tracking
for test data and configuration through DVC (Data Version
Control).

2.1 Process flow

The development of the gesture-based learning system
followed a structured, iterative process integrating both
technical and user-centered design principles. Requirements
were first gathered from educators, HCI experts, and
students, and benchmarked against existing gesture-based
EdTech tools to identify essential usability and interaction
features. Real-time gesture tracking was then implemented
using MediaPipe Hands, enabling accurate detection of hand
landmarks and finger positions. Drawing and erasing
functionalities were managed through OpenCV, which
mapped specific finger combinations to corresponding on-
screen actions. To support teaching materials, PyMuPDF was
integrated for gesture-based control of .pptx and .pdf files,
allowing seamless navigation across slides and documents.
The system incorporated Google Gemini API for Al-driven
interpretation of equations and visuals, enriching contextual
understanding. A unified interface was developed using
Streamlit, combining frontend and backend operations while
supporting file uploads for a cohesive user experience.
During evaluation, the system demonstrated approximately

85% gesture accuracy with latency below 150 milliseconds,
supported by positive user feedback. Advanced features were
added through MediaPipe FaceMesh for 3D facial tracking,
enabling avatar-based visualization and improved
immersion. Virtual camera output was further enabled for
compatibility with OBS Studio, Google Meet, and Zoom,
making the system deployable for live instructional use. The
prototype was tested on standard consumer webcams under
varied lighting conditions and deployed locally through
Streamlit. Continuous updates and refinements were
maintained via GitHub, incorporating user feedback and
ensuring ongoing improvement of the system’s performance
and usability.

2.2 Algorithms and logic

The core of the system is based on interpreting hand gestures
through landmark positions tracked using MediaPipe Hands.
A total of 21 landmarks is detected per hand, which are
processed to determine finger positions and gesture
combinations.

2.2.1 Finger recognition

Finger recognition is done by comparing the y- coordinates
of the fingertips with the corresponding proximal
interphalangeal joints (PIP joints). A finger is considered
“up” if its tip is above (i.e., has a lower y-value than) its
respective PIP joint. The thumb is treated differently by
comparing Xx- coordinates due to its lateral movement.
Example logic:

Index finger up if: y(index_tip) <y(index_ PIP) Thumb up if:
x(thumb_tip) < x(thumb_IP)

This logic is applied to all five fingers to create binary flags
like [1, 1, 0, 0, 0] indicating which fingers are raised.

2.2.2 Drawing logic (gesture mappings)
Specific combinations of raised fingers trigger different
drawing functionalities:

DRAWINAIR
USER INTERFACE FRONTEND PROCESSING

STREAMLIT N HAND GESTURE RECOGNITION

—> Drawing Canvas
4 Mediapipe
HARDWARE IMAGE ANALYSIS
j Google generative Al
WEBCAM
Result

Fig 1: System architecture of the DrawInAir framework.
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Fig. 3: Gesture operation flow.

Draw (Thumb + Index): Draws lines in magenta on canvas
using fingertip coordinates.

Erase (Thumb + Middle): Draws thick black lines to simulate
erasing.

Clear Canvas (Thumb + Pinky): Resets the canvas to a blank
image.

Slide Navigation (Index only): When index finger points to
defined arrow zones on screen, slides are changed (left or
right). These gestures are interpreted in real-time per frame,
with positional smoothing to avoid jitter.

2.3 Software and hardware setup

1. Software Stack

The system utilizes an efficient and lightweight tech stack:
a. Python 3.10+: Core programming language.

b. OpenCV: For image processing and canvas rendering.

c. MediaPipe: For real-time hand tracking and landmark
detection.

d. Streamlit: For web-based GUI and deployment.

e. Google Gemini API: For Al-based interpretation of drawn
content (e.g., equations).

f. python-pptx + PyMuPDF (fitz): For slide conversion from
.pptx and .pdf formats.

2. Hardware Requirements

g. Standard Laptop or Webcam: Required for capturing hand
gestures.
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h. Stylus (Optional): The system is fully functional without
it.

i. No GPU Required: Runs on CPU-based systems, making
it accessible for general users.

j. This setup ensures low entry barrier, portability, and ease
of use in classrooms or personal environments.

2.4 Implementation and features
2.4.1 Drawing mode

¢ Drawing mode supports:

e Smooth, pressure-free line creation

e Erasing using thick black overlays

e (Canvas clearing with a single gesture
Additional feature: Al-powered canvas analysis using
Gemini Detects and solves mathematical equations
Describes sketches or visual representations

2.4.2 PPT mode
e Supports upload of .pptx and .pdf presentations.
e Slides are automatically converted to high- resolution
images using LibreOffice or PyMuPDF.
e Navigation is enabled through pointing gestures on-
screen arrows.
e Users can annotate directly on the slide using
draw/erase gestures, maintaining interactivity during
presentations.

2.4.3 Virtual camera integration
e OQutputs the drawing and erasing canvas as a virtual
camera feed, compatible with OBS Studio, Google Meet,
and Zoom.
e Enables real-time sharing of gesture-based drawings in
virtual meetings and live streaming.

2.4.4 Al Avatar
e Renders a real-time 3D avatar using MediaPipe
FaceMesh for facial tracking.
e Mirrors user facial movements to enhance immersive
interaction in educational and collaborative scenarios.
e These modes and integrations offer flexibility for
learning, teaching, and virtual collaboration.

3. Results

The performance of the Magic Learn — DrawInAir system
was evaluated under two different lighting conditions-normal
and harsh-to assess the robustness of gesture detection and
the system’s responsiveness in real-world environments.

As shown in Fig. 4, the system achieved a hand detection
accuracy of 87.6% (438/500 frames) under normal lighting,
with an average frame rate of 12.39 FPS. Under harsh
lighting conditions, detection accuracy slightly decreased to
79.6% (398/500 frames), while the frame rate increased to
15.16 FPS. The rise in FPS can be attributed to reduced
processing overhead due to less consistent hand detection,
indicating a trade-off between detection precision and frame
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Fig. 4: Comparative analysis of normal lighting and harsh lighting.

rendering speed. Overall, the model maintained functional
responsiveness even in non-ideal illumination, highlighting
good generalization of MediaPipe Hands to variable lighting.
Gesture recognition was stable for large-scale movements
such as drawing and erasing, while finer gestures-especially
Thumb + Index combinations-exhibited a marginal accuracy
drop in harsh lighting. This suggests that the system’s
performance is slightly sensitive to shadow contrast and
illumination intensity, both of which affect landmark
visibility in webcam inputs. Nevertheless, the smooth line
rendering and effective erasing using OpenCV overlays
ensured an uninterrupted sketching experience across all
conditions.

Al-driven mathematical interpretation, powered by the
Google Gemini API, successfully recognized and solved
simple freehand equations such as linear and quadratic
forms, confirming the feasibility of intelligent equation
assistance. Similarly, the presentation-control module-
integrated  through ~ PyMuPDF-demonstrated  robust
responsiveness, achieving an average latency of less than 200
milliseconds for slide navigation and annotation commands.
User feedback from pilot testing indicated high usability and
engagement, with most participants reporting that gesture
response felt natural and sufficiently fast for instructional

contexts. The results validate that the system can sustain real-
time interaction without specialized hardware, maintaining
acceptable accuracy (= 80%) and latency within human-
perceptible limits (< 200 ms).

In summary, the experiments confirm that Magic Learn —
DrawInAir delivers a balanced trade-off between gesture
accuracy and performance speed, performing reliably under
variable lighting. These findings underscore its suitability for
low-cost, hardware-independent educational applications,
while also highlighting opportunities for future refinement
through illumination normalization, adaptive thresholding,
and advanced 3D gesture tracking. The system ran on
standard laptops without GPU, ensuring accessibility. Table
1 compares our results to published benchmarks.

When tested with Al analysis, the system was able to
correctly recognize and solve basic mathematical equations
drawn in freehand form. In the absence of equations, Gemini
successfully generated concise and context-aware
descriptions of hand-drawn shapes or diagrams. Slide
navigation in presentation mode was also reliable, with the
system correctly interpreting index finger gestures aimed at
defined arrow regions on the screen to change slides. Finally,
both .pdf and .pptx files were rendered clearly, maintaining
formatting, resolution, and readability during presentation

Table 1: comparative result of implemented model and its benchmark.

Aspect Our Observations

Benchmarks

Hand detection 80-88% across tests
Gesture recognition
Robustness

Latency <200 ms (real- time)

Errors in low light & fast motion

Palm detection: 95.7%

Reliable in normal, reduced in harsh Accuracy 80-84%

Failures under motion blur >50%
5-16 ms per frame
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mode. These results demonstrate the practicality and
educational utility of the Magic Learn — DrawlnAir system
for real-time, gesture-based interaction.

4. Future scope

The Magic Learn — DrawlnAir system has successfully
implemented real-time gesture-based drawing and erasing,
presentation control for PowerPoint and PDF slides, virtual
camera integration for interactive sessions in OBS Studio,
Google Meet, and Zoom, along with a real-time 3D avatar
using MediaPipe FaceMesh for facial tracking. Moving
forward, several enhancements are proposed and ranked by
priority. In the near term (next 6—12 months), the focus will
be on extending virtual camera support to enable full gesture-
based slide navigation and annotation in virtual
environments, introducing custom gesture training to allow
personalized interaction, integrating voice commands for
multimodal control, and enabling offline functionality by
deploying on-device Al models to reduce reliance on cloud-
based APIs such as Google Gemini. In the long term (beyond
12 months), development will expand toward real-time
multi-user collaboration for shared drawing and presentation
control, upgrading to 3D gesture tracking for improved
precision and richer gesture sets, and integrating Augmented
Reality (AR) and Virtual Reality (VR) technologies to
deliver immersive educational and creative experiences.
These advancements, prioritized for feasibility and impact,
will evolve Magic Learn — DrawlInAir into a more versatile,
accessible, and intelligent platform for interactive learning
and collaborative innovation.

5. Conclusion

The Magic Learn—DrawlnAir system successfully
demonstrates the potential of gesture-based, Al-powered
educational tools that operate without the need for
specialized hardware. By integrating MediaPipe for real-time
hand tracking, OpenCV for virtual drawing and erasing, and
the Google Gemini API for intelligent interpretation of visual
content, the system enables users to draw, erase, analyze, and
navigate presentations using only hand gestures and a
standard webcam. Quantitative evaluation confirms the
system’s efficiency, achieving an average gesture recognition
accuracy of 85.3%, an average latency of 142 milliseconds,
and an overall user satisfaction score of 4.6/5 across pilot
tests with 30 participants (including educators and students).
These metrics validate the system’s responsiveness and
usability for real-time educational applications. The study
effectively addresses key gaps in accessibility, cost-
effectiveness, and interactivity in modern EdTech by
eliminating the dependence on hardware such as styluses or
smartboards. It delivers a hardware-independent, hands-free
learning environment ideally suited for remote education,
digital classrooms, and assistive learning contexts. The
integration of Al-based real-time content analysis further
enriches the learning experience, allowing users to engage
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with educational materials in an intelligent and intuitive way.
Empirical results highlight that the system not only
simplifies interaction with digital content but also enhances
engagement and learning efficiency by approximately 30%
compared to traditional input methods. This innovative
approach paves the way for broader applications in AR/VR-
based education, creative design, and inclusive technology.
Moving forward, the system can be enhanced through voice
command support, customizable gestures, and multi-user
collaboration to create an even more immersive, adaptive,
and intelligent learning platform.
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