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1. Introduction 

The rapid evolution of technology has transformed education 

from traditional classroom settings to digital and remote 

learning environments. Digital education platforms have 

become central to modern pedagogy, especially after the 

global shift toward online instruction.[1,2] Studies have shown 

that technology-enhanced tools such as interactive 

smartboards, styluses, and touchscreen interfaces 

significantly improve engagement and participation in digital 

classrooms.[3-5] However, these solutions often require 

specialized and costly hardware, limiting accessibility for 

learners and educators in resource-constrained settings.[6] As 

the demand for affordable and inclusive educational 

technologies grows, researchers have begun exploring 

alternative modes of human–computer interaction that 

eliminate physical dependencies.[7-9] Among these, gesture-

based systems have emerged as an intuitive and natural 

method of interaction that bridges the gap between physical 

and digital learning spaces.[10,11] Prior research demonstrates 

that hand and body gestures can effectively support 

contactless control, interactive visualization, and immersive 

engagement in educational and creative domains.[12,13] Such 

systems provide a hands-free interface that can adapt to 

diverse user needs-ranging from virtual classrooms to 

assistive applications-thereby promoting inclusivity and 

accessibility. Gesture recognition technologies, when 

combined with real-time computer vision and AI analysis, 

enable novel modes of user interaction that closely mimic 
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natural human communication.[14] Building upon this 

foundation, the present study introduces Magic Learn – 

DrawInAir, an AI-powered, gesture-based learning and 

interaction system that transforms an ordinary webcam into 

a multifunctional input device. The system integrates 

MediaPipe for real-time hand and face tracking, OpenCV for 

virtual drawing and erasing, and the Google Gemini API for 

intelligent content interpretation such as equation 

recognition and analysis. Users can control PowerPoint and 

PDF presentations, sketch and erase freely in the air, and 

even stream their virtual drawings to OBS Studio, Google 

Meet, and Zoom. A 3D facial avatar, rendered through 

MediaPipe FaceMesh, adds an expressive dimension to user 

presence. Unlike conventional hardware-dependent 

solutions, Magic Learn – DrawInAir is lightweight, portable, 

and hardware-agnostic, requiring only a webcam and internet 

connectivity. It serves multiple domains including online 

education, EdTech presentations, creative design, and 

assistive technologies for individuals with disabilities. By 

employing natural hand and facial interactions, the project 

aims to create a smart, inclusive, and futuristic learning 

environment that democratizes access to interactive digital 

education while maintaining cost-effectiveness and ease of 

use. 

Recent advancements in gesture recognition and hand-

pose estimation have enabled more natural human–computer 

interactions across industrial, educational, and creative 

domains. Vision-based methods remain among the most 

widely explored approaches for real-time tracking.  Bertolasi 

et al. studied to assess the accuracy of HL2 in tracking hand 

position and measuring kinematic hand parameters, 

including joint angles and lateral pinch span (distance 

between thumb and index fingertips), using its tracking 

data.[15] Mulla et al.[16] combined open-source markerless 

motion capture pipelines (MediaPipe and Anipose) to 

measure 3D hand kinematics during single finger flexion–

extension using multiple cameras. Xiao et al.[17] reported 

utilization wearable rings and wrist sensors to track finger 

movements with high precision. While innovative, the 

approach depends on specialized wearable devices, which 

may not be practical for widespread adoption due to cost and 

accessibility issues. Gadekallu et al.[18] propose a 

convolutional neural network (CNN) optimized with Harris 

Hawks Optimization for improved gesture recognition 

accuracy. However, the method requires significant 

computational resources and involves complex setup 

processes, posing challenges for real-time applications. Sen 

et al.[19] used to preprocess an image using binary 

thresholding for gesture detection, then extracting and 

segmenting the hand region. Next, the segmented images are 

resized and processed in parallel by three separate CNN 

models. The prediction scores from the three CNNs are 

averaged to create an optimal ensemble model for the final 

hand gesture recognition. Mohamed et al.[20] summarised AI-

based methods for real-time gesture recognition, covering 

various techniques and their applications. While 

comprehensive, the paper lacks practical implementation 

details and focuses solely on theoretical analysis, limiting its 

immediate applicability. Dupré et al. reported The TriPad 

system enables drawing and user interface interaction in AR 

through hand pose tracking. It performs well on flat surfaces 

but is light-dependent and struggles with non-flat 

environments, reducing its versatility in diverse settings.[21] 

Hoa et al.[22] reported gesture recognition using millimeter-

wave radar. This study uses millimeter-wave radar to detect 

gestures on deformable objects, offering a novel approach for 

flexible surfaces. However, it requires specialized radar 

devices and a controlled test setup, which may limit its 

practical deployment. Jonsson and Tholander explores 

human-AI collaboration in creative education, focusing on 

gesture-based interactions to enhance creativity. Its scope is 

limited to creative use cases, lacking general-purpose 

applicability for broader gesture recognition scenarios.[23] Lei 

et al. combine multiple sensors to achieve high- accuracy 

hand tracking in virtual reality (VR). While effective, the 

approach requires a complex hardware setup, making it less 

feasible for applications without specialized equipment.[24] 

Zhang et al.[25] applies Vision Transformer (ViT) models for 

recognizing static gestures with high accuracy. However, it 

relies on depth cameras and is not optimized for standard 

webcams, limiting its accessibility for general-purpose use 

Collectively, these studies demonstrate significant 

progress in gesture recognition technologies across 

computer-vision, wearable, radar, and AI-driven modalities. 

However, most existing systems rely on specialized sensors, 

complex hardware, or computationally intensive models, 

restricting their deployment in affordable, accessible 

learning environments. These limitations highlight the need 

for a lightweight, hardware-independent, and real-time 

gesture-based framework—such as the present Magic Learn 

– DrawInAir system—which utilizes standard webcams and 

AI integration to deliver intuitive, low-cost, and inclusive 

interaction for education and creative applications. 

 

2. Methodology  

Fig. 1 shows the system architecture of the DrawInAir 

framework. Magic Learn - DrawInAir uses five components: 

gesture tracking, canvas rendering, AI analysis, slide control, 

and user interface. MediaPipe Hands tracks hand gestures in 

real time. A custom YOLO and CNN model, trained on the 

26K Hand Keypoint Dataset, was tested for hand tracking but 

showed lower accuracy than MediaPipe Hands in visual 

manual testing, so we chose MediaPipe. Gestures like Thumb 

+ Index for drawing and Thumb + Middle for erasing map to 

actions.  

OpenCV renders drawing and erasing on a virtual canvas 

stored as a NumPy array. Google Gemini API interprets 

drawings to solve equations or describe visuals. PowerPoint 

or PDF slides convert to images using python-pptx and 

PyMuPDF, with navigation via finger gestures. MediaPipe 
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FaceMesh tracks facial movements for a 3D avatar. Streamlit 

provides an interface for camera streaming, file uploads, 

mode selection, virtual camera output, and AI analysis. The 

system uses existing models like MediaPipe Hands, 

FaceMesh, and Google Gemini, avoiding custom neural 

network training. Evaluation measures gesture accuracy, AI 

interpretation, and user experience through testing and 

feedback. 

Development followed a biweekly sprint cycle, with 

regular testing and iterative updates. Each functional unit 

was implemented and validated independently before 

integration. The application was deployed using Streamlit, 

and version control was maintained via GitHub with tracking 

for test data and configuration through DVC (Data Version 

Control). 

 

2.1 Process flow   

The development of the gesture-based learning system 

followed a structured, iterative process integrating both 

technical and user-centered design principles. Requirements 

were first gathered from educators, HCI experts, and 

students, and benchmarked against existing gesture-based 

EdTech tools to identify essential usability and interaction 

features. Real-time gesture tracking was then implemented 

using MediaPipe Hands, enabling accurate detection of hand 

landmarks and finger positions. Drawing and erasing 

functionalities were managed through OpenCV, which 

mapped specific finger combinations to corresponding on-

screen actions. To support teaching materials, PyMuPDF was 

integrated for gesture-based control of .pptx and .pdf files, 

allowing seamless navigation across slides and documents. 

The system incorporated Google Gemini API for AI-driven 

interpretation of equations and visuals, enriching contextual 

understanding. A unified interface was developed using 

Streamlit, combining frontend and backend operations while 

supporting file uploads for a cohesive user experience. 

During evaluation, the system demonstrated approximately 

85% gesture accuracy with latency below 150 milliseconds, 

supported by positive user feedback. Advanced features were 

added through MediaPipe FaceMesh for 3D facial tracking, 

enabling avatar-based visualization and improved 

immersion. Virtual camera output was further enabled for 

compatibility with OBS Studio, Google Meet, and Zoom, 

making the system deployable for live instructional use. The 

prototype was tested on standard consumer webcams under 

varied lighting conditions and deployed locally through 

Streamlit. Continuous updates and refinements were 

maintained via GitHub, incorporating user feedback and 

ensuring ongoing improvement of the system’s performance 

and usability. 

 

2.2 Algorithms and logic 

The core of the system is based on interpreting hand gestures 

through landmark positions tracked using MediaPipe Hands. 

A total of 21 landmarks is detected per hand, which are 

processed to determine finger positions and gesture 

combinations. 

 

2.2.1 Finger recognition 

Finger recognition is done by comparing the y- coordinates 

of the fingertips with the corresponding proximal 

interphalangeal joints (PIP joints). A finger is considered 

“up” if its tip is above (i.e., has a lower y-value than) its 

respective PIP joint. The thumb is treated differently by 

comparing x- coordinates due to its lateral movement. 

Example logic: 

Index finger up if: y(index_tip) < y(index_PIP) Thumb up if: 

x(thumb_tip) < x(thumb_IP) 

This logic is applied to all five fingers to create binary flags 

like [1, 1, 0, 0, 0] indicating which fingers are raised. 

 

2.2.2 Drawing logic (gesture mappings) 

Specific combinations of raised fingers trigger different 

drawing functionalities: 

 
Fig 1: System architecture of the DrawInAir framework. 
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Fig. 2: Mediapipe handpoint system. 

 
Fig. 3: Gesture operation flow. 

 

Draw (Thumb + Index): Draws lines in magenta on canvas 

using fingertip coordinates. 

Erase (Thumb + Middle): Draws thick black lines to simulate 

erasing. 

Clear Canvas (Thumb + Pinky): Resets the canvas to a blank 

image.  

Slide Navigation (Index only): When index finger points to 

defined arrow zones on screen, slides are changed (left or 

right). These gestures are interpreted in real-time per frame, 

with positional smoothing to avoid jitter. 

 

2.3 Software and hardware setup 

1. Software Stack 

The system utilizes an efficient and lightweight tech stack: 

a. Python 3.10+: Core programming language. 

b. OpenCV: For image processing and canvas rendering. 

c. MediaPipe: For real-time hand tracking and landmark 

detection. 

d. Streamlit: For web-based GUI and deployment. 

e. Google Gemini API: For AI-based interpretation of drawn 

content (e.g., equations). 

f. python-pptx + PyMuPDF (fitz): For slide conversion from 

.pptx and .pdf formats. 

2. Hardware Requirements 

g. Standard Laptop or Webcam: Required for capturing hand 

gestures. 

h. Stylus (Optional): The system is fully functional without 

it. 

i. No GPU Required: Runs on CPU-based systems, making 

it accessible for general users. 

j. This setup ensures low entry barrier, portability, and ease 

of use in classrooms or personal environments. 

 

2.4 Implementation and features 

2.4.1 Drawing mode 

• Drawing mode supports: 

• Smooth, pressure-free line creation  

• Erasing using thick black overlays  

• Canvas clearing with a single gesture 

Additional feature: AI-powered canvas analysis using 

Gemini Detects and solves mathematical equations 

Describes sketches or visual representations 

 

2.4.2 PPT mode 

• Supports upload of .pptx and .pdf presentations.  

• Slides are automatically converted to high- resolution 

images using LibreOffice or PyMuPDF.  

• Navigation is enabled through pointing gestures on- 

screen arrows.  

• Users can annotate directly on the slide using 

draw/erase gestures, maintaining interactivity during 

presentations. 

 

2.4.3 Virtual camera integration 

• Outputs the drawing and erasing canvas as a virtual 

camera feed, compatible with OBS Studio, Google Meet, 

and Zoom. 

• Enables real-time sharing of gesture-based drawings in 

virtual meetings and live streaming. 

 

2.4.4 AI Avatar 

• Renders a real-time 3D avatar using MediaPipe 

FaceMesh for facial tracking. 

• Mirrors user facial movements to enhance immersive 

interaction in educational and collaborative scenarios. 

• These modes and integrations offer flexibility for 

learning, teaching, and virtual collaboration. 

 

3. Results  

The performance of the Magic Learn – DrawInAir system 

was evaluated under two different lighting conditions-normal 

and harsh-to assess the robustness of gesture detection and 

the system’s responsiveness in real-world environments. 

As shown in Fig. 4, the system achieved a hand detection 

accuracy of 87.6% (438/500 frames) under normal lighting, 

with an average frame rate of 12.39 FPS. Under harsh 

lighting conditions, detection accuracy slightly decreased to 

79.6% (398/500 frames), while the frame rate increased to 

15.16 FPS. The rise in FPS can be attributed to reduced 

processing overhead due to less consistent hand detection, 

indicating a trade-off between detection precision and frame 
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Fig. 4: Comparative analysis of normal lighting and harsh lighting. 

 

rendering speed. Overall, the model maintained functional 

responsiveness even in non-ideal illumination, highlighting 

good generalization of MediaPipe Hands to variable lighting. 

Gesture recognition was stable for large-scale movements 

such as drawing and erasing, while finer gestures-especially 

Thumb + Index combinations-exhibited a marginal accuracy 

drop in harsh lighting. This suggests that the system’s 

performance is slightly sensitive to shadow contrast and 

illumination intensity, both of which affect landmark 

visibility in webcam inputs. Nevertheless, the smooth line 

rendering and effective erasing using OpenCV overlays 

ensured an uninterrupted sketching experience across all 

conditions. 

AI-driven mathematical interpretation, powered by the 

Google Gemini API, successfully recognized and solved 

simple freehand equations such as linear and quadratic 

forms, confirming the feasibility of intelligent equation 

assistance. Similarly, the presentation-control module-

integrated through PyMuPDF-demonstrated robust 

responsiveness, achieving an average latency of less than 200 

milliseconds for slide navigation and annotation commands. 

User feedback from pilot testing indicated high usability and 

engagement, with most participants reporting that gesture 

response felt natural and sufficiently fast for instructional 

contexts. The results validate that the system can sustain real-

time interaction without specialized hardware, maintaining 

acceptable accuracy (≥ 80%) and latency within human-

perceptible limits (< 200 ms). 

In summary, the experiments confirm that Magic Learn – 

DrawInAir delivers a balanced trade-off between gesture 

accuracy and performance speed, performing reliably under 

variable lighting. These findings underscore its suitability for 

low-cost, hardware-independent educational applications, 

while also highlighting opportunities for future refinement 

through illumination normalization, adaptive thresholding, 

and advanced 3D gesture tracking. The system ran on 

standard laptops without GPU, ensuring accessibility. Table 

1 compares our results to published benchmarks. 

When tested with AI analysis, the system was able to 

correctly recognize and solve basic mathematical equations 

drawn in freehand form. In the absence of equations, Gemini 

successfully generated concise and context-aware 

descriptions of hand-drawn shapes or diagrams. Slide 

navigation in presentation mode was also reliable, with the 

system correctly interpreting index finger gestures aimed at 

defined arrow regions on the screen to change slides. Finally, 

both .pdf and .pptx files were rendered clearly, maintaining 

formatting, resolution, and readability during presentation  

Table 1: comparative result of implemented model and its benchmark. 

Aspect Our Observations Benchmarks 

Hand detection 80–88% across tests Palm detection: 95.7% 

Gesture recognition Reliable in normal, reduced in harsh Accuracy 80–84% 

Robustness Errors in low light & fast motion Failures under motion blur ≥50% 

Latency <200 ms (real- time) 5–16 ms per frame 
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mode. These results demonstrate the practicality and 

educational utility of the Magic Learn – DrawInAir system 

for real-time, gesture-based interaction. 

 

4. Future scope  

The Magic Learn – DrawInAir system has successfully 

implemented real-time gesture-based drawing and erasing, 

presentation control for PowerPoint and PDF slides, virtual 

camera integration for interactive sessions in OBS Studio, 

Google Meet, and Zoom, along with a real-time 3D avatar 

using MediaPipe FaceMesh for facial tracking. Moving 

forward, several enhancements are proposed and ranked by 

priority. In the near term (next 6–12 months), the focus will 

be on extending virtual camera support to enable full gesture-

based slide navigation and annotation in virtual 

environments, introducing custom gesture training to allow 

personalized interaction, integrating voice commands for 

multimodal control, and enabling offline functionality by 

deploying on-device AI models to reduce reliance on cloud-

based APIs such as Google Gemini. In the long term (beyond 

12 months), development will expand toward real-time 

multi-user collaboration for shared drawing and presentation 

control, upgrading to 3D gesture tracking for improved 

precision and richer gesture sets, and integrating Augmented 

Reality (AR) and Virtual Reality (VR) technologies to 

deliver immersive educational and creative experiences. 

These advancements, prioritized for feasibility and impact, 

will evolve Magic Learn – DrawInAir into a more versatile, 

accessible, and intelligent platform for interactive learning 

and collaborative innovation. 

 

5. Conclusion 

The Magic Learn–DrawInAir system successfully 

demonstrates the potential of gesture-based, AI-powered 

educational tools that operate without the need for 

specialized hardware. By integrating MediaPipe for real-time 

hand tracking, OpenCV for virtual drawing and erasing, and 

the Google Gemini API for intelligent interpretation of visual 

content, the system enables users to draw, erase, analyze, and 

navigate presentations using only hand gestures and a 

standard webcam. Quantitative evaluation confirms the 

system’s efficiency, achieving an average gesture recognition 

accuracy of 85.3%, an average latency of 142 milliseconds, 

and an overall user satisfaction score of 4.6/5 across pilot 

tests with 30 participants (including educators and students). 

These metrics validate the system’s responsiveness and 

usability for real-time educational applications. The study 

effectively addresses key gaps in accessibility, cost-

effectiveness, and interactivity in modern EdTech by 

eliminating the dependence on hardware such as styluses or 

smartboards. It delivers a hardware-independent, hands-free 

learning environment ideally suited for remote education, 

digital classrooms, and assistive learning contexts. The 

integration of AI-based real-time content analysis further 

enriches the learning experience, allowing users to engage 

with educational materials in an intelligent and intuitive way. 

Empirical results highlight that the system not only 

simplifies interaction with digital content but also enhances 

engagement and learning efficiency by approximately 30% 

compared to traditional input methods. This innovative 

approach paves the way for broader applications in AR/VR-

based education, creative design, and inclusive technology. 

Moving forward, the system can be enhanced through voice 

command support, customizable gestures, and multi-user 

collaboration to create an even more immersive, adaptive, 

and intelligent learning platform. 
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