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1. Introduction 

1.1 The global challenge: food security under climatic 

stress 

Global agriculture, the foundation of human sustenance and 

economic stability, is confronting a challenge of unparalleled 

scope and complexity. The intensifying effects of climate 

change represent a significant threat to food security, a sector 

vital to the global population.[1] This worldwide disruption is 

primarily caused by the excessive buildup of greenhouse 

gases (GHGs), mainly carbon dioxide (CO2) and methane, 

in the atmosphere. These emissions, stemming from human 

activities like burning fossil fuels, industrial processes, and 

extensive deforestation, have profoundly altered the planet's 

climate systems.[2] The outcomes are extensive, manifesting 

as a continuous increase in global average temperatures, 

major shifts in precipitation patterns, and a notable rise in the 

frequency and severity of extreme weather events. These 

climatic changes collectively weaken the stability and output 

of agricultural systems globally, endangering the livelihoods 

of billions and the security of the global food supply.[2] 
The connection between agriculture and climate change 

is a complex feedback loop, not a one- way street. The 

agricultural sector is not merely a casualty of climate change 

but also a major contributor to the issue. On a global scale, 

agriculture is responsible for a large share of GHG emissions, 

contributing an estimated 65-80% of all nitrous oxide (NO) 
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emissions, which are mainly produced by livestock, feedlots, 

and the use of nitrogen-based fertilizers on cultivated lands.[2] 

This dynamic fosters a detrimental cycle: agricultural 

practices release GHGs that fuel climate change, which, in 

turn, creates unfavorable conditions that harm agricultural 

systems. This feedback loop highlights the critical need to 

develop solutions that can both strengthen agriculture's ability 

to adapt and lessen its environmental impact. Consequently, 

any technological or policy measure must tackle both aspects 

of this crucial relationship, building resilience to the impacts 

farmers are already experiencing while encouraging 

practices that curb future emissions in Fig. 1. 

 

1.2 Key climate-induced agricultural disruptions: yield, 

soil, and water 

The consequences of climate change for agriculture are 

diverse, touching almost every aspect of the production 

system. These disruptions are primarily seen in greater yield 

fluctuations, ongoing soil degradation, and increasing water 

shortages. 

Yield variability: A primary and economically detrimental 

effect of climate change is the heightened variability and 

general decline in crop yields. Escalating temperatures, 

prolonged heat waves, and modified rainfall patterns 

interfere with plant development stages, disrupt growth 

cycles, and cause heat stress, resulting in lower yields for key 

crops like corn, rice, and wheat. Even when farmers adopt 

adaptive measures, such as adjusting planting schedules or 

switching crop varieties, the overall trend indicates 

substantial losses. Projections for future climate scenarios are 

alarming; for example, some crop models foresee yield 

decreases of up to 15.2% for rice and 14.1% for wheat in 

susceptible areas.[3] A comprehensive analysis that accounts 

for farmer adaptation projects that in a high-emissions future, 

global yields of calories from staple crops will be 24% lower 

in 2100 than they would be without climate change. This 

instability not only endangers the global food supply but also 

threatens the financial security of farming communities, 

especially in developing nations where agriculture is the 

main source of income and food. The unequal distribution of 

these impacts is a major issue, as marginalized groups often 

do not have the financial means, technology, or institutional 

backing needed to adjust to changing environmental 

conditions, leaving them highly exposed to food insecurity 

and economic hardship. Rural communities in arid and semi-

arid areas, who already deal with scarce resources, are among 

the most vulnerable.[3] 

Soil degradation: Climate change presents a significant 

danger to the health and productivity of agricultural soils. 

The warmer air temperatures of recent decades are 

anticipated to create a more intense water cycle, marked by 

more common and severe rainfall. This increased 

precipitation directly heightens the risk of soil erosion, a 

major environmental danger to sustainable farming. 

Additionally, higher soil temperatures speed up the microbial 

breakdown of soil organic matter. This action strips the soil 

of vital nutrients and releases stored carbon into the 

atmosphere, adding to global warming. The combined result 

of these actions is a marked decline in soil quality and 

fertility, which consequently affects crop growth and output.[4] 

In the long run, this degradation can cause major losses of soil 

carbon, with some research projecting losses as high as 22% 

over 50 years in agricultural areas affected by erosion.[4] 

Water scarcity and quality: The reliability of water resources, 

essential for all agricultural output, is being seriously 

threatened by climate change. Altered precipitation patterns 

are causing more frequent and intense droughts in some areas, 

while others are hit by catastrophic floods, both of which 

 
Fig. 1: Agriculture’s climate feedback loop. 
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interfere with planting and harvesting and harm agricultural 

infrastructure. In coastal farming areas, the danger is 

increased by rising sea levels. The flow of saltwater into 

freshwater sources and wells can make them unsuitable for 

irrigation once salt levels pass a certain point.[4] This problem 

is especially severe in low-lying delta areas, like the Mekong 

Delta in Vietnam, where a large amount of the world's rice is 

grown and is extremely susceptible to flooding and 

salinization in Fig. 2. 

Pests and diseases: In addition to the direct effects on crops, 

soil, and water, climate change is reshaping the patterns of 

agricultural pests and diseases. Higher temperatures and 

different humidity levels are creating better environments for 

the proliferation and spread of many insect pests, harmful 

bacteria, and fungi. This includes a greater danger from fungi 

that produce mycotoxins, such as Aspergillus, which can 

spoil crops and present a major risk to food safety.[5] The rise 

of new pest and disease threats forces farmers to create new 

management plans, often leading to greater use of chemical 

products and making the goal of sustainable farming more 

complex. 

 

1.3 The technological response: an overview of RS and AI 

as transformative tools 

To address this intricate network of climate-related 

challenges, a formidable technological approach has 

developed at the crossroads of Earth observation and data 

science. Remote Sensing (RS) and Artificial Intelligence (AI) 

are being combined more frequently to offer groundbreaking 

tools for observing, comprehending, identifying, and 

lessening the effects of climate change on agriculture. RS 

technologies, utilized on satellites and unmanned aerial 

vehicles (UAVs), make it possible to monitor large 

agricultural areas with high spatial and temporal detail, 

delivering impartial and current data on vegetation changes, 

soil states, and water levels. 

This flood of Earth observation data, however, would be 

unmanageable without the analytical strength of AI. AI, 

particularly its branches of machine learning (ML) and deep 

learning (DL), offers the sophisticated computational tools 

required to handle these huge datasets, spot intricate patterns, 

and produce predictive insights. The collaboration between 

RS and AI is ushering in a new phase of data-led agriculture. 

This combination is the foundation of precision agriculture 

and climate-smart farming, supporting the creation of 

advanced decision-support systems that assist farmers in 

optimizing resource use, strengthening the resilience of their 

farms, and adjusting to the new realities of a changing 

climate.[6] By delivering practical intelligence at the field, 

farm, and regional levels, these technologies have the 

potential to guide global agriculture toward a more 

sustainable, productive, and climate-resilient future. 

 

2. The remote sensing toolkit: monitoring agriculture 

from above 

2.1 Foundational principles: from electromagnetic 

radiation to actionable data 

Remote sensing is the field of science and technology 

dedicated to gathering information about the Earth's surface 

from a distance, usually from satellites or aircraft. The core 

idea is to detect and measure electromagnetic radiation that is 

either reflected or emitted by objects on the ground.[7] Every 

object on the Earth's surface interacts with solar energy in a 

distinct way, absorbing some wavelengths while reflecting

 
Fig. 2: Climate condition in crop yield. 
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Fig. 3: Remote sensing in agriculture. 

 

others. This unique spectral signature enables sensors to 

differentiate between various features, such as healthy plants, 

stressed crops, bare ground, or bodies of water.[7] Remote 

sensing systems are generally divided into two types based on 

their energy source: passive and active systems Fig. 3. 

Passive systems depend on an outside energy source, most 

often the sun. They are fitted with sensors that gauge the solar 

radiation reflected from the Earth's surface. A standard 

camera serves as a basic example of a passive system. In 

agricultural surveillance, the most commonly used passive 

sensors are multispectral and hyperspectral imagers on 

satellites (like Landsat, Sentinel-2) and UAVs, which record 

data in several specific bands of the electromagnetic 

spectrum. 

Active systems produce their own electromagnetic 

radiation, which they direct at a target. The sensor then 

measures the part of that radiation that is reflected or scattered 

back from the target. This method has the major benefit of 

being able to collect data at any time of day or night and in 

most weather conditions. Important active systems in 

agriculture include Radar (Radio Detection and Ranging), 

whose microwave signals can pass through clouds and even 

plant canopies to assess soil moisture and crop structure, and 

LiDAR (Light Detection and Ranging), which employs laser 

pulses to generate highly detailed 3D maps of the land and 

plant canopy. 

The path of electromagnetic radiation from its origin to 

the sensor is not without obstacles. As radiation moves 

through the Earth's atmosphere, it is subject to being 

scattered and absorbed by particles and gases.[7] These 

atmospheric phenomena can alter the signal the sensor 

receives, leading to inaccuracies in the data. Thus, a vital step 

in handling raw remote sensing data is atmospheric 

correction, which uses physical models to eliminate these 

distortions and obtain a precise measurement of surface 

reflectance.[7] This corrected data is what is used to create 

dependable and useful agricultural information products. The 

raw data, which is a set of digital numbers indicating 

radiance, is not directly useful. It must first be processed 

through these preliminary steps and then changed into 

significant biophysical parameters to be valuable for 

agricultural analysis.[8] This change from raw data to useful 

information is a crucial, expert-led process that comes before 

any use of AI models. 

 

2.2 Platforms and sensors: a multi-scale observational 

arsenal 

Monitoring agriculture demands data at various spatial and 

temporal resolutions, from the level of a single plant to entire 

continents. To address this requirement, a wide range of 

remote sensing platforms has been created, each with distinct 

features and uses. 

• Satellite Platforms: Satellites are the main tools for 

large-scale agricultural surveillance, offering consistent, 

regular, and worldwide coverage. Government-led 

initiatives like the NASA/USGS Landsat series and the 

European Space Agency's (ESA) Copernicus Sentinel 

missions provide freely accessible, long-term data 

archives that are essential for tracking climate trends 

and changes in land use. Missions such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS) 

deliver daily global coverage, though at a lower spatial 

resolution, making them perfect for observing regional 

drought and seasonal plant dynamics.[9] The ongoing 
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function of these satellite groups offers a historical 

record that goes back decades, which is crucial for 

comprehending the long-term effects of climate change 

on agricultural areas. 

• Unmanned Aerial Vehicles (UAVs): Also referred to as 

drones, UAVs have become a groundbreaking platform 

for precision agriculture. By flying at low altitudes, 

UAVs can take pictures with extremely high spatial 

resolution (often down to a few centimeters per pixel), 

offering a level of detail that is unattainable from 

satellites. This ability permits field-level management on 

an unprecedented scale, such as spotting individual 

stressed plants, mapping weed outbreaks with great 

accuracy, or checking the success of targeted fertilizer 

use.[10] The adaptability of UAVs also means data can be 

gathered as needed, letting farmers react quickly to 

changing situations in their fields.[11] 

• Ground-Based Sensors: While remote sensing offers a 

perspective from above, ground- based sensors supply 

vital on-site measurements. These encompass stationary 

soil moisture detectors, weather stations, and portable 

spectroradiometers that yield highly precise, point- 

specific data. This ground truth data is crucial for the 

calibration and verification of models developed from 

satellite and UAV images. By connecting the spectral 

data from remote sensors to direct measurements of soil 

and plant characteristics on the ground, researchers can 

create more dependable and precise algorithms for 

agricultural evaluation. 

Choosing a platform and sensor requires a strategic 

balance, as there is a natural trade-off among the main 

features of remote sensing data: spatial, temporal, and 

spectral resolution. For instance, satellites like MODIS 

provide high temporal resolution (daily visits) but have 

coarse spatial resolution (250 m to 1 km), making them 

appropriate for regional surveillance but not for detailed field 

management.[12] On the other hand, high-resolution 

commercial satellites and UAVs offer excellent spatial detail 

but cover smaller areas and might have less frequent revisits 

or higher operational costs. This basic trade-off is a major 

reason for the creation of advanced methods like multi-sensor 

data fusion, which seek to merge the advantages of different 

systems to produce a more thorough and effective dataset 

showing in Table 1. 

 

2.3 Key data products for agricultural assessment 

Raw remote sensing data is converted into various standard 

products designed to measure particular characteristics of the 

land surface. The usefulness of these products is determined 

by three main features: spatial, spectral, and temporal 

resolution. 

Spatial resolution indicates the size of the smallest object 

that can be identified in an image, which relates to the ground 

area a single pixel covers. High spatial resolution (e.g., 10 m 

from Sentinel-2 or <1 m from UAVs) is vital for precision 

agriculture tasks that need detailed maps of in-field 

variations. Lower spatial resolution (e.g., 250 m from 

MODIS) is adequate for tracking trends over large areas. 

Spectral resolution defines a sensor's capacity to 

differentiate between various light wavelengths. 

Multispectral sensors, like those on Landsat and Sentinel-2, 

record data in a few, relatively wide spectral bands (e.g., blue, 

green, red, near-infrared, thermal). Hyperspectral sensors, 

however, gather data in hundreds of very narrow, continuous 

bands. This high spectral detail enables the detection of slight 

changes in the chemical makeup of plants and soils, 

facilitating applications such as identifying specific nutrient 

shortages or spotting the initial stages of disease. 

Temporal resolution, or revisit frequency, is the duration 

it takes for a sensor to capture an image of the same spot on 

the Earth's surface again. High temporal resolution is 

essential for observing dynamic agricultural activities. For 

instance, the daily data from MODIS is invaluable for 

monitoring the swift development of a "flash drought" or for

Table 1: The key features of several satellite missions that are central to contemporary agricultural monitoring. 

Mission Name Sensor(s) Key Spatial 

Resolutions (m) 

Temporal 

Resolution (days) 

Number of 

Spectral Bands 

Key Agricultural Applications 

Sentinel-1 C-band SAR 10, 20, 40 6–12 1 (Radar) Soil moisture mapping, crop structure 

analysis, monitoring through clouds 

Sentinel-2 MSI 10, 20, 60 2–5 13 Crop type classification, vegetation 

health monitoring, water stress 

detection 

Landsat 8/9 OLI / TIRS-2 15 (Pan), 30 

(MS), 100 

(Thermal) 

16 11 Land use change, long-term trend 

analysis, evapotranspiration mapping 

MODIS MODIS 250, 500, 1000 1–2 36 Regional drought monitoring, large- 

area yield forecasting, phenology 

tracking 

Planet Scope Dove, Super 

Dove 

~3 Daily 8 Field-level anomaly detection, 

precision irrigation, damage 

assessment 
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accurately recording key crop growth phases (phenology), 

which can happen in a very short time frame.[12] From the 

adjusted spectral reflectance data, a broad array of 

biophysical parameters can be calculated. The most frequent 

and effective of these are Vegetation Indices and Land 

Surface Vegetation Indices (VIs) are straightforward yet 

reliable metrics derived by mathematically combining the 

reflectance values of two or more spectral bands. They are 

formulated to amplify the spectral signal of green vegetation 

while reducing interference from other elements like soil 

brightness or atmospheric conditions. The most commonly 

used VI is the Normalized Difference Vegetation Index 

(NDVI), which is computed from the near- infrared (NIR) 

and red bands with the formula.[13] Healthy, thriving vegetation 

strongly absorbs red light for photosynthesis and reflects NIR 

light, leading to high NDVI values (nearing +1). In contrast, 

stressed vegetation or bare soil reflects more red light and less 

NIR, resulting in lower NDVI values. Other significant 

indices include the Enhanced Vegetation Index (EVI), which 

is less likely to saturate over thick canopies, the Soil-

Adjusted Vegetation Index (SAVI), which lessens the effect 

of the soil background, and the Normalized Difference Water 

Index (NDWI), which is responsive to the water content in 

plant canopies. 

Land Surface Temperature (LST) is calculated from 

measurements in the thermal infrared part of the 

electromagnetic spectrum. LST is a crucial indicator of the 

surface energy balance and is very responsive to water 

availability. When plants have enough water, they cool down 

through transpiration. When they are short of water, their 

stomata close to save water, which makes their canopy 

temperature increase. Consequently, LST, especially when 

examined with VIs, is a potent tool for tracking drought, 

evaluating crop water stress, and calculating 

evapotranspiration rates.[13] 

 

3. The rise of artificial intelligence in agricultural 

analytics 

3.1 Machine learning and deep learning: from prediction 

to prescription 

Artificial Intelligence (AI) is a wide-ranging area of 

computer science cantered on developing systems that can 

carry out tasks that usually need human intelligence, like 

learning, reasoning, and solving problems. In this domain, 

Machine Learning (ML) and its sophisticated subfield, Deep 

Learning (DL), have become the main drivers of the data 

transformation in agriculture. 

Machine Learning (ML) is a part of AI that concentrates 

on creating algorithms that can learn from and make 

forecasts on data without being specifically programmed for 

a certain task.[14] Instead of adhering to a strict set of rules, an 

ML model is "trained" on a vast dataset of past examples. 

During this training, the algorithm finds underlying patterns 

and connections in the data. After training, the model can use 

this acquired knowledge to make forecasts or classifications 

on new, unobserved data. This capacity to generalize from 

previous experience makes ML highly suitable for 

agricultural uses, where conditions are intricate and 

fluctuating. 

Deep Learning (DL) is a more specialized area within ML 

that employs a particular kind of architecture known as an 

artificial neural network. What makes DL "deep" is its use of 

several layers of connected nodes (or "neurons"), which 

enables the model to learn features from the data in a 

structured way. For instance, when looking at an image of a 

crop, the first layers of a deep neural network might learn to 

identify basic features like edges and color. Later layers merge 

these basic features to learn more intricate patterns, such as 

textures and shapes, and even deeper layers can learn to 

recognize whole objects, like a sick leaf or a certain kind of 

weed. This ability for automatic and structured feature 

extraction makes DL especially effective for analyzing large, 

unstructured datasets like remote sensing images, where the 

important patterns might be too faint or complex for a person 

to define by hand.[10] 

The main objective of using these AI technologies in 

agriculture is to shift from conventional, uniform 

management methods to a data-informed, prescriptive 

strategy. The development of AI's function can be viewed as 

a move from descriptive to predictive, and then to prescriptive 

analysis. At first, AI models were employed for descriptive 

purposes like categorizing crop types or mapping soil 

differences.[15] The subsequent stage was predictive, utilizing 

historical data to forecast future results like end-of-season 

yield.[16] The current leading edge is prescriptive analytics, 

where AI systems not only foresee a problem but also suggest 

a particular, optimized solution, such as creating a variable-

rate fertilizer map or an automated irrigation plan.[10] This 

change is expected to greatly improve operational 

effectiveness, boost profitability, and lessen the 

environmental effects of farming activities.[16] Nevertheless, 

for a farmer to rely on and follow a prescriptive suggestion 

from an AI, a high level of trust in the model's logic is 

necessary, which emphasizes the increasing significance of 

model transparency and clarity.[17] 

 

3.2 Core AI applications: crop classification, yield 

forecasting, and stress detection 

The use of AI in agriculture is extensive, but a few key areas 

have experienced the most notable progress and influence. 

These applications directly tackle the main difficulties 

presented by climate change, such as managing resources 

effectively, forecasting production results, and addressing 

environmental pressures. 

• Crop management and recognition: A basic task in 

agricultural surveillance is to determine what is being 

grown and where. AI models, especially DL classifiers, 

can examine satellite or aerial photos to precisely map 

the spatial layout of various crop types over large areas. 

This data is crucial for national and regional 
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governments in agricultural planning, distributing 

resources, and guaranteeing food security. At the farm 

level, AI aids in crop management by assisting in the 

choice of the most appropriate crop varieties for 

particular environmental settings. By analyzing large 

datasets of genetic data, past weather trends, and soil 

features, ML models can pinpoint crop varieties that are 

more likely to be resistant to local diseases and resilient 

to expected climate challenges like drought or heat.[16] 

• Yield prediction/forecasting: Accurately predicting 

crop yields before the harvest is one of the most vital and 

beneficial uses of AI in agriculture. ML models are 

trained on historical data that encompasses a broad 

spectrum of variables, such as weather trends 

(temperature, rainfall), soil characteristics, management 

methods, and time-series of remote sensing data (e.g., 

vegetation indices). By understanding the intricate, non-

linear connections between these elements and past yield 

results, the models can produce dependable forecasts for 

the next harvest. These predictions are extremely 

valuable for a variety of stakeholders: farmers can use 

them to make improved marketing and storage choices; 

insurance companies can use them to evaluate risk; and 

governments can use them to foresee food shortages and 

handle strategic reserves. 

• Stress and disease detection: A highly promising 

application of AI, particularly DL- powered computer 

vision, is the early identification of crop stress. DL 

models, especially Convolutional Neural Networks 

(CNNs), can be trained on extensive image collections 

to identify the subtle visual signs of different stressors, 

including nutrient shortages, water stress, pest invasions, 

and diseases.[10] These models can often spot these 

problems from high- resolution UAV or satellite images 

days or even weeks before the symptoms are noticeable 

to the human eye. This early detection capability permits 

prompt and focused actions, such as the accurate 

application of fertilizers or pesticides only to the 

impacted parts of a field. This method, known as 

precision agriculture, not only enhances the effectiveness 

of the treatment and reduces crop loss but also markedly 

cuts down on the overall use of chemical inputs, 

resulting in lower expenses for the farmer and a smaller 

environmental footprint.[10] 

 

3.3 A survey of dominant models: from random forests to 

convolutional neural networks 

The advancement of AI applications in agriculture has been 

paralleled by a development in the complexity and power of 

the models used. This pattern mirrors the growing 

accessibility of large- scale datasets and the increasing 

strength of computing hardware, which have facilitated a 

move from conventional, understandable ML algorithms to 

more potent but intricate DL structures. 

 

3.3.1 Traditional machine learning models 

These models are the basis for many predictive uses in 

agriculture and are still commonly employed, especially 

when handling structured, tabular data. 

• Linear Regression: This is one of the most basic 

models, used to forecast a continuous result (like crop 

yield) based on its linear connection with one or more 

input variables (like total rainfall or average 

temperature).[18] Although it has limitations in 

capturing complex relationships, it provides a helpful 

starting point. 

• Support Vector Machines (SVMs): These are strong 

and adaptable models that can be used for both 

classification (e.g., crop type) and regression (e.g., 

yield prediction). SVMs are especially good at 

handling high-dimensional data, where there are 

numerous input features. 

• Tree-Based Models: This group of models, which 

includes Decision Trees, Random Forests, and 

Gradient Boosting Machines, is very popular in 

agricultural analysis. A Random Forest (RF) is an 

"ensemble" model that functions by creating many 

individual decision trees during training and then 

providing the class that is the most common among the 

classes (classification) or the average prediction 

(regression) of the individual trees. This ensemble 

method makes RF very resistant to overfitting and 

able to manage complex, non-linear data with great 

accuracy. It is often seen as the "go-to" model for 

tasks like crop classification and yield prediction from 

satellite data.[16] 

 

3.3.2 Deep learning models 

These models have become the leading choice for 

applications that involve unstructured data, particularly 

images. Their capacity to learn features from the data 

automatically gives them a major performance edge. 

• Convolutional Neural Networks (CNNs): CNNs are 

the clear leaders in image analysis tasks. Their design 

is specifically tailored to process grid-like data, such 

as images, by using "convolutional" layers that 

automatically learn and identify spatial arrangements 

of features. This makes them extremely well-suited 

for analyzing remote sensing data for purposes like 

land cover mapping, crop classification, and spotting 

the visual signs of disease from aerial photos. 

• Recurrent Neural Networks (RNNs): In contrast to 

CNNs, which are made for spatial data, RNNs are 

designed to work with sequential data. They have an 

internal "memory" that lets them process sequences of 

inputs, making them perfect for time-series analysis. 

In agriculture, RNNs and their more sophisticated 

version, Long Short-Term Memory (LSTM) 

networks, are used to examine temporal patterns in 

data, like daily weather readings or weekly vegetation 
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index values from satellites, to model crop growth 

over a season and forecast the end-of-season yield.[19] 

• Hybrid Models: To combine the advantages of 

various architectures, researchers have created hybrid 

models. A notable example is the CNN-LSTM 

model, which merges a CNN front-end for extracting 

spatial features from individual images in a time series 

with an LSTM back-end to model the temporal 

connections between those features. This spatio-

temporal method has shown better accuracy in 

forecasting crop yield from sequences of satellite 

images.[20] 

 

4. Synergistic applications: integrating Remote Sensing 

(RS) and AI for climate impact assessment 

The real groundbreaking power in contemporary agricultural 

surveillance comes not from Remote Sensing (RS) or 

Artificial Intelligence (AI) used separately, but from their 

combined integration. In this approach, RS functions as the 

main data gathering tool, supplying a constant flow of 

observations about the Earth's surface. AI, on the other hand, 

acts as the analytical core, handling this huge and intricate 

data to find significant patterns, create predictive insights, and 

convert them into practical intelligence for decision-makers. 

This combined workflow constitutes a full pipeline, from data 

collection to real-world application, and is the basis for 

nearly all sophisticated uses in climate-resilient agriculture. 

The procedure starts with gathering raw data from different 

platforms, mainly satellites and UAVs. This raw imagery, 

however, is not ready for immediate use and needs to go 

through several preprocessing steps to correct for 

atmospheric effects, geometric errors, and sensor flaws.[10] 

After the data is cleaned, the next important phase is featuring 

engineering, where specialized knowledge is used to pull out 

relevant biophysical variables from the corrected images. 

This includes calculating metrics like vegetation indices 

(e.g., NDVI, EVI) from multispectral data or determining 

Land Surface Temperature (LST) from thermal bands. These 

engineered features, which show the health, vitality, and 

stress levels of plants, are the main inputs for the AI models. 

The AI/ML model is then trained with these features along 

with corresponding "ground truth" data, like historical yield 

data or soil moisture readings taken in the field. After 

thorough training and validation, the model can be used to 

make predictions on new data, producing outputs like detailed 

yield maps, water stress forecasts, or disease risk evaluations. 

The last, vital step is to change these model outputs into a 

format that is easy for the end-user to understand and act on, 

such as a variable-rate application map for a tractor's GPS or 

a straightforward irrigation warning sent to a farmer's phone. 

This complete process, shown in a workflow diagram, 

illustrates how raw satellite data is gradually improved 

through a mix of remote sensing science and machine 

learning into concrete decision-support tools. 

 

4.1 Monitoring drought and water scarcity 

Evaluating and managing water availability is likely the most 

crucial task in helping agriculture adapt to climate change. 

The combination of RS and AI offers a strong, non-invasive 

toolkit for tracking drought and crop water stress over 

extensive areas. RS satellites consistently supply key data, 

with vegetation indices from multispectral sensors showing 

the effect of water stress on plant health, and LST from 

thermal sensors giving a direct reading of surface 

temperature, which increases when plants cannot cool 

themselves by transpiring. 

Although these separate data streams are useful, their real 

strength is shown when they are cleverly combined. One of 

the most successful and commonly used methods for this is 

the NDVI-LST feature space. This technique involves 

making a scatter plot of pixel values from an area, with NDVI 

on the x-axis and LST on the y-axis.[13] The resulting pattern 

of points usually creates a triangular or trapezoidal shape. 

The edges of this shape have significant physical 

interpretations: the "warm edge" indicates pixels with the 

highest temperature for a certain amount of vegetation, 

matching dry, water-scarce conditions. The "wet edge" 

shows pixels with the lowest temperature for a certain 

amount of vegetation, corresponding to well-watered 

conditions with maximum transpiration. The location of any 

single pixel in this feature space gives a solid, relative 

indication of its water availability. AI and statistical models 

use this connection to calculate quantitative measures like the 

Soil Moisture Index (SMI), which can be mapped to produce 

detailed, field-level evaluations of water stress.[13] This 

method is a clear example of how combining different data 

types-in this case, a vegetation metric and a thermal metric-

can produce a much more effective indicator of crop 

condition than either could on its own. 

Beyond tracking current situations, the merging of 

geospatial data and AI, often called GeoAI, is facilitating the 

creation of predictive drought forecasting and early warning 

systems. ML models, like Random Forest, can be trained to 

combine data from various satellite sensors (e.g., MODIS for 

temperature, TRMM for rainfall, SMAP for soil moisture) 

with climate model outputs to generate high-resolution 

forecasts of soil moisture and drought risk.[21] These systems 

permit proactive instead of reactive management, allowing 

water managers and farmers to make timely choices, such as 

changing irrigation schedules or switching to more drought-

resistant crops, long before a drought's full effects are 

realized.[21] Additionally, AI-driven analysis of high-

resolution RGB, thermal, and hyperspectral images from 

UAVs enables the accurate identification of water stress at 

the sub-field level, directing precision irrigation methods that 

optimize water use and increase yield.[22] 

 

4.2 Assessing vegetation health and phenological shifts 

Observing the health and growth phases (phenology) of crops 

is essential for evaluating agricultural output and spotting the 
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effects of climate fluctuations. Vegetation Indices (VIs) 

calculated from satellite data are the main instruments for this 

purpose. Indices like the NDVI act as a substitute for 

measuring vegetation greenness and biomass, while more 

sophisticated metrics like the Vegetation Condition Index 

(VCI) and the Vegetation Health Index (VHI) offer a more 

detailed evaluation of vegetation health by comparing present 

conditions to the historical range for a particular place and 

time of year. The VCI adjusts the current NDVI value against 

its long-term minimum and maximum, effectively removing 

the impact of local geography and seasons to pinpoint 

unusual conditions that suggest stress. The VHI improves on 

this by adding LST data, giving a combined measure of 

health that considers both moisture and temperature stress. 

The high frequency of visits by satellites like MODIS and 

Sentinel-2 allows for the creation of dense time-series of 

these indices, enabling continuous observation of crop 

growth throughout the season. This temporal data is where 

AI models, especially those designed for sequential data like 

RNNs and LSTMs, are most effective. These models can 

examine the typical phenological curve of a crop—the 

pattern of greening, peak growth, and decline—and spot 

slight variations from the usual pattern. Such irregularities 

can indicate the presence of stress or, over time, point to 

fundamental changes in the timing of growing seasons, a key 

effect of climate change.[23] By learning the temporal patterns 

of different crops and conditions, these AI models can offer 

early alerts of potential issues and help to better understand 

how agricultural systems are reacting to a changing climate. 

 

4.3 Predicting crop yield variability 

Crop yield prediction is a key application of combined RS 

and AI, with major consequences for global food security, 

market stability, and agricultural insurance. The basic method 

involves using a varied set of input features, mainly from RS 

and weather data, to train an ML model that can accurately 

forecast the final yield. 

The input features for these models are diverse. Time-

series of VIs (like NDVI) during the growing season are a 

primary indicator of crop health and biomass growth. LST 

data offers information on temperature and water stress. 

These RS-derived variables are usually mixed with 

meteorological data (e.g., rainfall, temperature, solar 

radiation) and static data on soil properties (e.g., texture, 

organic matter content).[20] The ML model, which can vary 

from traditional algorithms like Random Forest and Support 

Vector Regression to more advanced DL architectures, is 

trained on historical records of these features and their related 

final yields. 

Recent progress has indicated that DL models, in 

particular, provide better performance for this task. CNNs 

can automatically find relevant spatial patterns in satellite 

imagery that suggest yield potential, while hybrid CNN-

LSTM models can handle both the spatial and temporal 

aspects of the data at the same time, tracking the changes in 

crop conditions throughout the season. These advanced 

models can learn the complex, non-linear relationships 

between environmental factors and crop growth, resulting in 

more precise and dependable yield forecasts.[17] The capacity 

to produce accurate, pre-harvest yield predictions allows for 

proactive planning at all levels, from a farmer managing 

harvest logistics to a government agency handling national 

food supplies in the face of climate fluctuations. 

 

4.4 Early detection of pest and disease outbreaks 

Climate change is modifying the spread and intensity of 

agricultural pests and diseases, presenting new difficulties for 

crop protection. The combination of high-resolution remote 

sensing and AI- driven computer vision provides a strong new 

defense. High-resolution images, usually taken from UAVs 

with multispectral or hyperspectral sensors, can detect slight 

changes in the spectral reflectance of plant leaves caused by 

the physiological stress from a pest or pathogen. These 

spectral changes often happen long before any symptoms, 

like spots or color changes, are visible to the naked eye. 

This is where the pattern recognition skills of DL models, 

especially CNNs, are crucial. These models are trained on 

large, labeled datasets with images of healthy plants and 

plants affected by different diseases and pests. Through this 

training, the CNN learns to spot the specific spectral and 

spatial signs linked to particular problems. When used, the 

model can analyze new images and classify plants with high 

accuracy, often over 95% for certain diseases. This allows for 

the creation of exact maps showing the location and size of 

an outbreak in a field. This information permits a quick and 

focused response, like applying pesticides precisely only to 

the affected areas. This targeted method not only boosts the 

effectiveness of the treatment and cuts crop losses but also 

greatly reduces the total amount of chemical inputs used, 

leading to significant cost savings and a smaller 

environmental impact of farming. The use of different 

sensing platforms-satellites for wide-area observation to find 

anomalies and UAVs for detailed examination of those 

anomalies-forms a layered, multi-scale monitoring system. 

This hierarchical method, where each platform makes up for 

the weaknesses of the others, is key to building a thorough 

and effective crop protection plan against increasing climate-

related dangers. 

 

5. Advanced frontiers: pushing the boundaries of 

agricultural monitoring 

In addition to the main applications, the areas of remote 

sensing and artificial intelligence are quickly advancing, 

with new methods and platforms appearing that promise to 

offer even more advanced, scalable, and predictive tools for 

agricultural surveillance. These new frontiers are aimed at 

overcoming the drawbacks of single-sensor systems, making 

planetary-scale data processing more accessible, and 

moving from analyzing past climate effects to accurately 

forecasting future weather conditions. 
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5.1 Multi-sensor data fusion: creating a more complete 

picture 

No single remote sensing sensor can supply all the data 

required for thorough agricultural surveillance. Optical 

sensors give detailed spectral information but are blocked by 

clouds; radar can penetrate clouds but offers different data on 

structure and moisture; and LiDAR provides detailed 3D 

information but is often costly to use. Multi-sensor data 

fusion is an advanced method that seeks to overcome these 

separate limitations by cleverly merging data from several, 

complementary sensor types to form a single, combined 

dataset that is more informative and dependable than any of 

its individual parts.[24] 

A typical example is the merging of optical and radar 

data. By combining the high-resolution spectral data from 

an optical satellite like Sentinel-2 with the all-weather 

imaging ability of a radar satellite like Sentinel-1, it is 

possible to create a continuous time-series of observations 

for crop monitoring, even when it is cloudy and optical data 

is not available. This is especially important in tropical areas 

where constant cloud cover can greatly reduce the usefulness 

of optical sensors. Data fusion can be carried out at several 

different levels of complexity[24]: 

• Pixel-level fusion means merging the raw pixel values 

from various sensors at the very start of processing. 

• Feature-level fusion, the most frequent method, involves 

first pulling out key features (like vegetation indices from 

optical data and backscatter coefficients from radar data) 

from each sensor separately and then using these features 

as inputs for a classification or prediction model. 

• Decision-level fusion works at the highest level of 

complexity, where separate decisions are made based on 

each data source, and then a final, unified decision is made 

by combining these separate outputs. 

By using the complementary advantages of different 

sensors, data fusion is greatly enhancing the accuracy of key 

agricultural applications, such as crop type classification, soil 

property mapping, and the evaluation of plant health and 

water stress. 

 

5.2 Cloud-based geospatial platforms: enabling 

planetary-scale analysis with google earth engine 

In the past, a major obstacle in remote sensing research was 

the practical difficulty of managing data. The huge amount of 

satellite imagery needed for large-area, long-term studies 

made analysis computationally too demanding for all but the 

most well-equipped institutions. This situation has been 

completely changed by the rise of cloud-based geospatial 

analysis platforms, especially Google Earth Engine (GEE). 

GEE is a global-scale platform that merges a multi-petabyte, 

constantly updated collection of publicly available satellite 

imagery and other geospatial datasets (including the full 

archives of Landsat, Sentinel, and MODIS) with a strong, 

parallelized cloud computing system. This groundbreaking 

model removes the need for users to download and keep 

terabytes of data on their own computers. Instead, users can 

create and run complex analysis algorithms directly on 

Google's servers through a straightforward web-based API, 

with the outcomes sent back to their browser in moments .[25] 

This has greatly opened up the field of Earth observation, 

allowing researchers, non-profits, and government bodies 

worldwide to perform analyses on a scale that was 

previously unthinkable.[26] GEE is now extensively used for 

a wide variety of agricultural purposes, from mapping 

cropland over entire continents and tracking deforestation in 

almost real-time to evaluating the regional effects of drought 

on food production.[27] This move from local processing to 

global, cloud-based platforms marks a fundamental shift in 

how remote sensing science is performed. While it has 

provided unprecedented analytical capabilities, it also creates 

a new reliance on a few large technology companies, posing 

significant long-term questions about data control, ongoing 

access, and the risk of algorithmic bias becoming embedded 

at a systemic level.[28] 

 

5.3 AI-Enhanced climate models: towards hyper-local 

and long-range forecasting  

The use of AI in the climate field is changing significantly. 

While a lot of the attention has been on using AI to study the 

effects of weather as recorded by remote sensing data, an 

exciting new area involves using AI to create the next 

generation of weather and climate forecasting models 

themselves. 

Conventional weather prediction depends on numerical 

weather prediction (NWP) models, which are huge, physics-

based simulations of the Earth's atmosphere. Although very 

accurate, these models are computationally demanding, 

needing massive supercomputing power to operate. This high 

expense and complexity have restricted their availability, 

especially for weather agencies in developing nations.[29] 

Lately, a new type of AI-driven weather model has 

appeared that is set to alter this situation. Models like 

Google's GraphCast and NeuralGCM, and Huawei's Pangu-

Weather, are trained on decades of past weather data, learning 

the basic patterns and dynamics of the atmosphere directly 

from observations instead of from explicit physical laws. The 

outcomes have been impressive. Once trained, these AI 

models can produce highly accurate global forecasts at a 

speed that is much faster than traditional NWP models, and 

they can be run on a single GPU or even a powerful laptop 

instead of a supercomputer.[29] 

This technological advance is a potential game-changer 

for agriculture. It allows for the delivery of hyper-local, 

timely, and accurate weather forecasts to farmers in areas that 

previously did not have such capabilities. Access to 

dependable forecasts for temperature, rainfall, and the chance 

of extreme events is vital for making smart decisions about 

when to plant, irrigate, fertilize, or take protective actions 

against pests.[29] This marks a significant move up the causal 

chain: instead of just monitoring the agricultural effects of 
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weather after it has happened, AI is now enabling the 

proactive prediction of the weather itself, offering a much 

more powerful tool for climate adaptation and resilience. 

 

6. Critical challenges and current limitations 

Despite the groundbreaking potential of combining remote 

sensing and AI, the journey to widespread, effective, and fair 

implementation is filled with major difficulties. These 

obstacles are not just technical; they are closely linked to 

problems with data quality, model dependability, and socio-

economic factors. Recognizing and tackling these limitations 

is crucial for directing future research and making sure that 

these powerful technologies fulfill their promise for everyone 

in the agricultural sector. 

 

6.1 The data dilemma: heterogeneity, quality, and scarcity 

The saying "garbage in, garbage out" is especially true in the 

context of data-driven AI. The effectiveness of even the most 

advanced algorithm is fundamentally limited by the quality, 

amount, and representativeness of the data it is trained on. In 

agricultural remote sensing, the data situation 

is full of challenges. 

• Heterogeneity: A main technical problem is combining 

data from many different sources. Merging images from 

various satellites, UAVs, and ground sensors needs 

complex harmonization processes to account for large 

differences in spatial resolution, temporal frequency, 

spectral features, and data formats. Creating a single, 

consistent, ready-to-use dataset from these varied sources 

is a difficult task that requires considerable expertise and 

computing power. 

• Quality and Availability: The quality of remote sensing 

data can be inconsistent. Optical satellite imagery, the 

most common data source, is often blocked by clouds, 

particularly in tropical and subtropical areas, causing 

large gaps in time-series data. All data is affected by 

atmospheric interference and needs careful calibration 

and correction to be trustworthy.[30] 

• Scarcity of Ground Truth: The most significant issue is 

likely the shortage of high-quality, labeled ground-truth 

data. AI models, especially supervised learning models, 

need large amounts of accurate, on-the-ground data for 

training and validation. For instance, a yield prediction 

model must be trained on thousands of examples of 

remote sensing features matched with actual, measured 

yield data from those exact locations. This ground data is 

often costly, time-consuming, and labor-intensive to 

gather.[31] As a consequence, current datasets are often 

small and geographically limited, leading to what is 

known as "data poverty" in many parts of the world, 

especially in developing countries and for smallholder 

farming systems. This shortage not only restricts model 

accuracy but also creates significant bias, as models are 

mainly trained on data from large, well-funded industrial 

farms in North America and Europe, making them less 

suitable for the varied agricultural systems found in other 

places. 

 

6.2 The model transferability problem: from local success 

to global application 

A direct result of the data scarcity and bias issue is the 

difficulty of model transferability, also known as 

generalizability. An AI model trained on data from one 

particular agro-climatic area often does not perform well 

when used in a different area. This happens because the 

model has learned the specific connections between 

environmental variables, management methods, and crop 

reactions that are unique to its training environment. When 

faced with new crop types, different soil conditions, 

unfamiliar climate patterns, or other farming methods, its 

predictive ability quickly decreases.[32] 

For example, a model designed to predict corn yield in the 

U.S. Midwest is not likely to be effective for predicting maize 

yield in Sub-Saharan Africa, where fields are smaller, 

intercropping is frequent, and climate challenges are 

different. This inability to transfer is a major obstacle to 

creating scalable, affordable solutions for global agriculture. 

It means that models cannot be developed once and then used 

everywhere; they need significant and expensive regional 

adjustments, fine-tuning, or complete retraining with local 

data to be effective. Overcoming this problem is a key focus 

of current research, with an emphasis on creating more robust 

models that can learn more basic, transferable relationships 

or adapt to new areas with little local data. 

 

6.3 The "Black Box" issue: the need for transparency and 

trust 

Many of the most effective and accurate AI models, 

especially in deep learning, operate as "black boxes." 

Although they can make very accurate predictions, their 

internal decision-making process is often unclear and hard 

for humans to understand.[19] A deep neural network might 

predict that a certain part of a field is at high risk for disease, 

but it cannot easily explain why it came to that conclusion. 

This lack of clarity is a major hurdle to adoption in a high-

stakes field like agriculture.[24] Farmers, agronomists, and 

policymakers are understandably hesitant to base important 

and expensive decisions on the advice of a system whose 

logic they cannot comprehend or check. Trust is essential for 

adoption. Moreover, the black box nature of these models can 

hide and continue hidden biases from the training data. If a 

model is trained on unrepresentative data, it may make 

consistently wrong predictions for certain groups or areas, 

leading to unfair or even damaging results.[33] Without 

transparency, finding and fixing these biases is very hard. 

 

6.4 Practical barriers: cost, infrastructure, and scalability 

In addition to the technical and data-related difficulties, a 

number of practical obstacles prevent the broad use of RS 

and AI technologies, leading to a notable "socio-technical 
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gap." The advantages of these new technologies risk being 

mainly enjoyed by large, well-funded operations, which 

could worsen current inequalities in the global food system. 

• Cost and Infrastructure: The initial spending needed for 

sensors, UAVs, specialized software, data storage, and 

high-performance computing can be too high for 

smallholder farmers and public organizations in low-

income countries.[34] 

• Connectivity: Many advanced agricultural technologies 

depend on real-time data transfer and access to cloud-

based platforms. However, dependable, high-speed 

internet is still a major problem in many rural areas 

worldwide, which limits the practicality of using these 

systems. 

• Technical Expertise: Using, running, and keeping these 

complex systems in good working order requires special 

skills. There is a large global deficit of people with 

knowledge in agronomy, remote sensing, and data 

science, which creates a "digital literacy" gap that stops 

many potential users from making effective use of these 

tools.[34] This shows that successful technology use must 

be paired with strong efforts in education, training, and 

skill-building to make sure the solutions are available and 

usable for all involved. 

 

7. Future outlook: towards integrated, explainable, and 

actionable systems 

Tackling the significant challenges mentioned in the last 

section calls for a forward-thinking research plan aimed at 

making RS and AI systems more open, comprehensive, and 

useful for end- users. The future of this area is in moving past 

purely technical goals of predictive accuracy and toward 

creating integrated systems that are dependable, fair, and truly 

helpful for making decisions on the ground. This change 

points to a future where technology helps to enhance, not 

substitute, human knowledge, promoting a cooperative 

relationship between machine intelligence and the local 

wisdom of farmers. 

 

7.1 Explainable AI (XAI): Opening the black box for 

stakeholder trust 

The "black box" issue is a major roadblock to the use of 

advanced AI models. In reaction, the field of Explainable AI 

(XAI) has developed with the clear aim of creating methods 

to make the decisions of complex models more open and 

understandable, without greatly reducing their predictive 

accuracy. XAI is not a single technique but a range of 

approaches created to answer the question: "Why did the 

model make this specific decision?" 

These methods can be generally grouped. Some, like 

LIME (Local Interpretable Model-agnostic Explanations) 

and SHAP (SHapley Additive exPlanations), function by 

clarifying individual predictions. They can, for instance, 

show which particular input features (e.g., high temperature 

in July, low NDVI in August) had the most impact on a 

model's decision to predict a low yield for a certain field. 

Other methods are made specifically for computer vision 

models. 

Grad-CAM (Gradient-weighted Class Activation 

Mapping), for example, creates a visual "heatmap" that can 

be placed over an input image, showing the exact pixels or 

areas of the image that a CNN concentrated on when making 

its classification. 

By offering this level of detail, XAI can change a black 

box prediction into a piece of information that a human 

expert-whether a farmer, an agronomist, or a policymaker-

can carefully assess. This capacity to examine the model's 

logic is key to establishing trust and confidence in AI-driven 

advice. Additionally, XAI acts as a strong diagnostic tool for 

developers, helping to find hidden biases in the data or errors 

in the model's reasoning. The inclusion of XAI is a crucial 

move in advancing AI for agriculture from just a predictive 

tool to a dependable and trustworthy partner in decision-

making. 

 

7.2 Integration with socio-economic data: a holistic view 

of vulnerability and resilience 

 The effects of climate change are not just a result of physical 

exposure; they are shaped by the socio-economic situation of 

the people affected. A community's susceptibility to an event 

like a drought is determined not only by how severe the lack 

of rain is but also by factors such as poverty levels, access to 

markets, the availability of irrigation systems, and social 

support networks. To create truly effective and fair 

adaptation plans, it is therefore crucial to go beyond just 

environmental monitoring and combine remote sensing data 

with socio-economic data. 

This combination allows for a more complete and 

detailed understanding of agricultural systems and their 

weaknesses. Organizations like NASA's Socioeconomic 

Data and Applications Center (SEDAC) are key in this effort 

by creating and sharing global, gridded datasets on important 

socio- economic factors like population density, poverty 

levels, infrastructure, and market access. When these datasets 

are merged with RS-derived data on climate risks (e.g., 

drought maps) and agricultural output (e.g., yield maps), it is 

possible to carry out thorough vulnerability studies. For 

instance, analysts can pinpoint "hotspots" that are not only 

facing severe climate stress but are also inhabited by people 

with low ability to adapt.[35] This comprehensive view is vital 

for directing interventions, distributing resources more 

efficiently, and creating policies that tackle the fundamental 

causes of vulnerability, making sure that climate adaptation 

measures support those who are most in need. 

 

7.3 developing localized Climate-Smart Decision-Support 

Systems (DSS) 

The true measure of success for these advanced technologies 

is their capacity to provide real advantages to farmers. This 

means turning complex data and models into useful, easy-to-
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access, and localized Decision-Support Systems (DSS). The 

main framework for creating these systems is increasingly 

Climate-Smart Agriculture (CSA), a combined approach that 

aims to achieve three related goals at the same time: 

sustainably boosting agricultural productivity, improving the 

resilience of farming systems (adaptation), and cutting down 

on greenhouse gas emissions when possible (mitigation). 

Effective DSS cannot be a single solution for everyone. 

They must be specifically designed for the particular agro-

ecological, climatic, and socio-economic situation where 

they will be used.[36] A DSS for a small-scale maize farmer in 

a semi-dry area of Africa will have very different needs from 

one made for a large commercial wheat farmer in a temperate 

region. The creation of these tools must therefore be a 

collaborative effort, developed with farmers, extension 

workers, and other local stakeholders to make sure the 

information given is relevant, timely, and practical in their 

specific working conditions. These systems are designed to 

offer very local advice, using real-time data from in-field 

sensors and high-resolution remote sensing, along with AI-

improved weather forecasts, to provide direction on key 

management choices.[26] This could include suggestions on the 

best planting times, exact irrigation schedules, variable-rate 

fertilizer use, or early alerts of pest and disease dangers. By 

incorporating advanced science into simple-to-use tools, 

these localized DSS form the final, crucial connection in the 

process from global satellite data to better local results, 

enabling farmers to create more productive, sustainable, and 

resilient agricultural systems. This development shows a 

wider change in how success is evaluated-moving from just 

predictive accuracy to a more complete assessment that 

includes transparency, fairness, usability, and real-world 

impact. 

 

8. Conclusion 

The combination of climate change and increasing global 

food needs has put immense strain on the world's farming 

systems. This review has brought together a wide range of 

research showing the groundbreaking potential of merging 

Remote Sensing (RS) and Artificial Intelligence (AI) to 

tackle this major issue. RS offers an unmatched ability for 

large-scale, ongoing surveillance of agricultural areas, 

supplying vital data on plant health, water levels, and soil 

states. AI, in turn, provides the analytical strength to process 

this huge flow of data into predictive insights and practical 

intelligence. Their combined effect is creating a major shift 

towards a more accurate, data-informed, and adaptable type 

of agriculture, with proven success in areas from crop yield 

forecasting and drought surveillance to the early spotting of 

pests and diseases. New developments like multi-sensor data 

fusion, cloud-based platforms such as Google Earth Engine, 

and AI-improved climate models are pushing the limits of 

what can be achieved, allowing for more dependable analyses 

on a global scale and offering proactive, very local forecasts. 

These technologies are no longer just ideas; they are 

becoming mature instruments that are the basis of modern 

climate-smart agriculture. However, the journey to using this 

potential globally is limited by major and varied difficulties. 

The dependability of AI models is fundamentally restricted 

by the supply of high-quality, representative training data-a 

resource that is still limited and not fairly distributed. The 

difficulty of transferring models across different agro-

climatic areas prevents the creation of scalable solutions. 

Furthermore, the "black box" aspect of many advanced 

algorithms creates a trust issue, while practical problems 

related to cost, infrastructure, and technical knowledge 

restrict access for the most at-risk farming communities. 

These difficulties highlight a key fact: technological progress 

by itself is not enough. The future of this area, therefore, must 

be shaped by a united effort to create systems that are not 

only precise but also open, fair, and practical. The move 

towards Explainable AI (XAI) is a crucial step in clarifying 

the black box, building the trust needed for broad use. The 

inclusion of socio- economic data is vital for moving from 

just biophysical monitoring to a complete understanding of 

vulnerability, making sure that actions are effectively 

targeted. In the end, the aim must be the joint creation of 

localized, climate-smart decision-support systems that 

provide farmers with timely, relevant, and usable 

information, enhancing their knowledge rather than trying to 

substitute it. To set a course for a truly climate-resilient 

agricultural future, a two-fold commitment is needed. 

Researchers and technologists must keep innovating, 

creating more robust, transferable, and understandable 

models. At the same time, policymakers, development 

organizations, and the private sector must invest in the 

essential foundations of data infrastructure, digital skills, and 

collaborative design. By closing the divide between 

advanced science and real-world conditions, the powerful 

combination of remote sensing and artificial intelligence can 

be used to help ensure a sustainable and food-secure future 

for a world facing a changing climate. 
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