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Abstract

Climate change poses a profound threat to global agriculture, leading to yield variability, soil degradation, water scarcity, and
increased vulnerability to pests and diseases. Over the past decade, Remote Sensing (RS) has emerged as a transformative
tool in understanding, detecting, and mitigating these impacts. A wide body of research demonstrates that Al-driven models,
particularly machine learning and deep learning techniques, are effective in predicting crop yield, drought stress, and soil
moisture variability, while remote sensing provides large-scale, high-resolution monitoring of vegetation dynamics,
evapotranspiration, and land surface temperature. Recent studies highlight advances in multi-sensor data fusion, cloud-
based platforms, and Al-enhanced climate models that enable more precise and timely assessments. Despite these
advances, challenges remain in terms of data heterogeneity, the need for regional calibration, and the limited transferability
of models across agro-climatic zones. This review synthesizes recent progress in Al- and RS-based agricultural monitoring
under climate change, critically evaluates their applications and limitations, and identifies future research directions such as
explainable Al, integration with socio-economic data, and the development of localized climate-smart decision-support

systems.
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1. Introduction

1.1 The global challenge: food security under climatic
stress

Global agriculture, the foundation of human sustenance and
economic stability, is confronting a challenge of unparalleled
scope and complexity. The intensifying effects of climate
change represent a significant threat to food security, a sector
vital to the global population.!"! This worldwide disruption is
primarily caused by the excessive buildup of greenhouse
gases (GHGs), mainly carbon dioxide (CO2) and methane,
in the atmosphere. These emissions, stemming from human
activities like burning fossil fuels, industrial processes, and
extensive deforestation, have profoundly altered the planet's

climate systems.”?! The outcomes are extensive, manifesting
as a continuous increase in global average temperatures,
major shifts in precipitation patterns, and a notable rise in the
frequency and severity of extreme weather events. These
climatic changes collectively weaken the stability and output
of agricultural systems globally, endangering the livelihoods
of billions and the security of the global food supply.?!

The connection between agriculture and climate change
is a complex feedback loop, not a one- way street. The
agricultural sector is not merely a casualty of climate change
but also a major contributor to the issue. On a global scale,
agriculture is responsible for a large share of GHG emissions,
contributing an estimated 65-80% of all nitrous oxide (NO)
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emissions, which are mainly produced by livestock, feedlots,
and the use of nitrogen-based fertilizers on cultivated lands.!?!
This dynamic fosters a detrimental cycle: agricultural
practices release GHGs that fuel climate change, which, in
turn, creates unfavorable conditions that harm agricultural
systems. This feedback loop highlights the critical need to
develop solutions that can both strengthen agriculture's ability
to adapt and lessen its environmental impact. Consequently,
any technological or policy measure must tackle both aspects
of this crucial relationship, building resilience to the impacts
farmers are already experiencing while encouraging
practices that curb future emissions in Fig. 1.

1.2 Key climate-induced agricultural disruptions: yield,
soil, and water

The consequences of climate change for agriculture are
diverse, touching almost every aspect of the production
system. These disruptions are primarily seen in greater yield
fluctuations, ongoing soil degradation, and increasing water
shortages.

Yield variability: A primary and economically detrimental
effect of climate change is the heightened variability and
general decline in crop yields. Escalating temperatures,
prolonged heat waves, and modified rainfall patterns
interfere with plant development stages, disrupt growth
cycles, and cause heat stress, resulting in lower yields for key
crops like corn, rice, and wheat. Even when farmers adopt
adaptive measures, such as adjusting planting schedules or
switching crop wvarieties, the overall trend indicates
substantial losses. Projections for future climate scenarios are
alarming; for example, some crop models foresee yield
decreases of up to 15.2% for rice and 14.1% for wheat in
susceptible areas.’! A comprehensive analysis that accounts
for farmer adaptation projects that in a high-emissions future,

global yields of calories from staple crops will be 24% lower
in 2100 than they would be without climate change. This
instability not only endangers the global food supply but also
threatens the financial security of farming communities,
especially in developing nations where agriculture is the
main source of income and food. The unequal distribution of
these impacts is a major issue, as marginalized groups often
do not have the financial means, technology, or institutional
backing needed to adjust to changing environmental
conditions, leaving them highly exposed to food insecurity
and economic hardship. Rural communities in arid and semi-
arid areas, who already deal with scarce resources, are among
the most vulnerable.

Soil degradation: Climate change presents a significant
danger to the health and productivity of agricultural soils.
The warmer air temperatures of recent decades are
anticipated to create a more intense water cycle, marked by
more common and severe rainfall. This increased
precipitation directly heightens the risk of soil erosion, a
major environmental danger to sustainable farming.
Additionally, higher soil temperatures speed up the microbial
breakdown of soil organic matter. This action strips the soil
of vital nutrients and releases stored carbon into the
atmosphere, adding to global warming. The combined result
of these actions is a marked decline in soil quality and
fertility, which consequently affects crop growth and output.”!
In the long run, this degradation can cause major losses of soil
carbon, with some research projecting losses as high as 22%
over 50 years in agricultural areas affected by erosion.
Water scarcity and quality: The reliability of water resources,
essential for all agricultural output, is being seriously
threatened by climate change. Altered precipitation patterns
are causing more frequent and intense droughts in some areas,
while others are hit by catastrophic floods, both of which
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Fig. 1: Agriculture’s climate feedback loop.
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interfere with planting and harvesting and harm agricultural
infrastructure. In coastal farming areas, the danger is
increased by rising sea levels. The flow of saltwater into
freshwater sources and wells can make them unsuitable for
irrigation once salt levels pass a certain point.[*! This problem
is especially severe in low-lying delta areas, like the Mekong
Delta in Vietnam, where a large amount of the world's rice is
grown and is extremely susceptible to flooding and
salinization in Fig. 2.

Pests and diseases: In addition to the direct effects on crops,
soil, and water, climate change is reshaping the patterns of
agricultural pests and diseases. Higher temperatures and
different humidity levels are creating better environments for
the proliferation and spread of many insect pests, harmful
bacteria, and fungi. This includes a greater danger from fungi
that produce mycotoxins, such as Aspergillus, which can
spoil crops and present a major risk to food safety.5! The rise
of new pest and disease threats forces farmers to create new
management plans, often leading to greater use of chemical
products and making the goal of sustainable farming more
complex.

1.3 The technological response: an overview of RS and Al
as transformative tools

To address this intricate network of climate-related
challenges, a formidable technological approach has
developed at the crossroads of Earth observation and data
science. Remote Sensing (RS) and Artificial Intelligence (Al)
are being combined more frequently to offer groundbreaking
tools for observing, comprehending, identifying, and
lessening the effects of climate change on agriculture. RS
technologies, utilized on satellites and unmanned aerial
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vehicles (UAVs), make it possible to monitor large
agricultural areas with high spatial and temporal detail,
delivering impartial and current data on vegetation changes,
soil states, and water levels.

This flood of Earth observation data, however, would be
unmanageable without the analytical strength of Al Al,
particularly its branches of machine learning (ML) and deep
learning (DL), offers the sophisticated computational tools
required to handle these huge datasets, spot intricate patterns,
and produce predictive insights. The collaboration between
RS and Al is ushering in a new phase of data-led agriculture.
This combination is the foundation of precision agriculture
and climate-smart farming, supporting the creation of
advanced decision-support systems that assist farmers in
optimizing resource use, strengthening the resilience of their
farms, and adjusting to the new realities of a changing
climate.l! By delivering practical intelligence at the field,
farm, and regional levels, these technologies have the
potential to guide global agriculture toward a more
sustainable, productive, and climate-resilient future.

2. The remote sensing toolkit: monitoring agriculture
from above

2.1 Foundational principles:
radiation to actionable data
Remote sensing is the field of science and technology
dedicated to gathering information about the Earth's surface
from a distance, usually from satellites or aircraft. The core
idea is to detect and measure electromagnetic radiation that is
either reflected or emitted by objects on the ground.[” Every
object on the Earth's surface interacts with solar energy in a
distinct way, absorbing some wavelengths while reflecting

from electromagnetic

CROP YIELDS UNDER PRESSURE

LOWER GLOBAL
YIELDS BY 2100

Vulnerable Communities
Hit Hardest
Developing nations and arid

regions lack resources to adapt,
increasing food insecurity

Projected loss in staple crop
calories if high emissions continue

THE TRIPLE THREAT TO NATURAL RESOURCES

WATER SCARCITY
& CONTAMINATION

Climate change causes both
intense droughts and floods, while
rising seas salinate freshwater.

RISE OF PESTS
& DISEASES

Warmer climates allow insect
pests and harmful, crop-spolling
fungi to thrive and spread.

Fig. 2: Climate condition in crop yield.
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Fig. 3: Remote sensing in agriculture.

others. This unique spectral signature enables sensors to
differentiate between various features, such as healthy plants,
stressed crops, bare ground, or bodies of water.” Remote
sensing systems are generally divided into two types based on
their energy source: passive and active systems Fig. 3.

Passive systems depend on an outside energy source, most
often the sun. They are fitted with sensors that gauge the solar
radiation reflected from the Earth's surface. A standard
camera serves as a basic example of a passive system. In
agricultural surveillance, the most commonly used passive
sensors are multispectral and hyperspectral imagers on
satellites (like Landsat, Sentinel-2) and UAVs, which record
data in several specific bands of the electromagnetic
spectrum.

Active systems produce their own electromagnetic
radiation, which they direct at a target. The sensor then
measures the part of that radiation that is reflected or scattered
back from the target. This method has the major benefit of
being able to collect data at any time of day or night and in
most weather conditions. Important active systems in
agriculture include Radar (Radio Detection and Ranging),
whose microwave signals can pass through clouds and even
plant canopies to assess soil moisture and crop structure, and
LiDAR (Light Detection and Ranging), which employs laser
pulses to generate highly detailed 3D maps of the land and
plant canopy.

The path of electromagnetic radiation from its origin to
the sensor is not without obstacles. As radiation moves
through the Earth's atmosphere, it is subject to being
scattered and absorbed by particles and gases.[! These
atmospheric phenomena can alter the signal the sensor
receives, leading to inaccuracies in the data. Thus, a vital step
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in handling raw remote sensing data is atmospheric
correction, which uses physical models to eliminate these
distortions and obtain a precise measurement of surface
reflectance.l’” This corrected data is what is used to create
dependable and useful agricultural information products. The
raw data, which is a set of digital numbers indicating
radiance, is not directly useful. It must first be processed
through these preliminary steps and then changed into
significant biophysical parameters to be valuable for
agricultural analysis.l® This change from raw data to useful
information is a crucial, expert-led process that comes before
any use of Al models.

2.2 Platforms and sensors: a multi-scale observational

arsenal

Monitoring agriculture demands data at various spatial and

temporal resolutions, from the level of a single plant to entire

continents. To address this requirement, a wide range of
remote sensing platforms has been created, each with distinct
features and uses.

e Satellite Platforms: Satellites are the main tools for
large-scale agricultural surveillance, offering consistent,
regular, and worldwide coverage. Government-led
initiatives like the NASA/USGS Landsat series and the
European Space Agency's (ESA) Copernicus Sentinel
missions provide freely accessible, long-term data
archives that are essential for tracking climate trends
and changes in land use. Missions such as the Moderate
Resolution Imaging Spectroradiometer (MODIS)
deliver daily global coverage, though at a lower spatial
resolution, making them perfect for observing regional
drought and seasonal plant dynamics.”! The ongoing
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function of these satellite groups offers a historical

record that goes back decades, which is crucial for

comprehending the long-term effects of climate change
on agricultural areas.

e Unmanned Aerial Vehicles (UAVs): Also referred to as
drones, UAVs have become a groundbreaking platform
for precision agriculture. By flying at low altitudes,
UAVs can take pictures with extremely high spatial
resolution (often down to a few centimeters per pixel),
offering a level of detail that is unattainable from
satellites. This ability permits field-level management on
an unprecedented scale, such as spotting individual
stressed plants, mapping weed outbreaks with great
accuracy, or checking the success of targeted fertilizer
use.' The adaptability of UAVs also means data can be
gathered as needed, letting farmers react quickly to
changing situations in their fields.[']

e Ground-Based Sensors: While remote sensing offers a
perspective from above, ground- based sensors supply
vital on-site measurements. These encompass stationary
soil moisture detectors, weather stations, and portable
spectroradiometers that yield highly precise, point-
specific data. This ground truth data is crucial for the
calibration and verification of models developed from
satellite and UAV images. By connecting the spectral
data from remote sensors to direct measurements of soil
and plant characteristics on the ground, researchers can
create more dependable and precise algorithms for
agricultural evaluation.

Choosing a platform and sensor requires a strategic
balance, as there is a natural trade-off among the main
features of remote sensing data: spatial, temporal, and
spectral resolution. For instance, satellites like MODIS
provide high temporal resolution (daily visits) but have
coarse spatial resolution (250 m to 1 km), making them
appropriate for regional surveillance but not for detailed field
management.” On the other hand, high-resolution

commercial satellites and UAVs offer excellent spatial detail
but cover smaller areas and might have less frequent revisits
or higher operational costs. This basic trade-off is a major
reason for the creation of advanced methods like multi-sensor
data fusion, which seek to merge the advantages of different
systems to produce a more thorough and effective dataset
showing in Table 1.

2.3 Key data products for agricultural assessment

Raw remote sensing data is converted into various standard
products designed to measure particular characteristics of the
land surface. The usefulness of these products is determined
by three main features: spatial, spectral, and temporal
resolution.

Spatial resolution indicates the size of the smallest object
that can be identified in an image, which relates to the ground
area a single pixel covers. High spatial resolution (e.g., 10 m
from Sentinel-2 or <1 m from UAVs) is vital for precision
agriculture tasks that need detailed maps of in-field
variations. Lower spatial resolution (e.g., 250 m from
MODIS) is adequate for tracking trends over large areas.

Spectral resolution defines a sensor's capacity to
differentiate  between  various light  wavelengths.
Multispectral sensors, like those on Landsat and Sentinel-2,
record data in a few, relatively wide spectral bands (e.g., blue,
green, red, near-infrared, thermal). Hyperspectral sensors,
however, gather data in hundreds of very narrow, continuous
bands. This high spectral detail enables the detection of slight
changes in the chemical makeup of plants and soils,
facilitating applications such as identifying specific nutrient
shortages or spotting the initial stages of disease.

Temporal resolution, or revisit frequency, is the duration
it takes for a sensor to capture an image of the same spot on
the Earth's surface again. High temporal resolution is
essential for observing dynamic agricultural activities. For
instance, the daily data from MODIS is invaluable for
monitoring the swift development of a "flash drought" or for

Table 1: The key features of several satellite missions that are central to contemporary agricultural monitoring.

Mission Name Sensor(s) Key Spatial Temporal Number of Key Agricultural Applications
Resolutions (m)  Resolution (days) Spectral Bands

Sentinel-1 C-band SAR 10, 20, 40 6-12 1 (Radar) Soil moisture mapping, crop structure
analysis, monitoring through clouds

Sentinel-2 MSI 10, 20, 60 2-5 13 Crop type classification, vegetation
health monitoring, water stress
detection

Landsat 8/9 OLI/TIRS-2 15 (Pan), 30 16 11 Land use change, long-term trend

(MS), 100 analysis, evapotranspiration mapping
(Thermal)

MODIS MODIS 250, 500, 1000 1-2 36 Regional drought monitoring, large-
area yield forecasting, phenology
tracking

Planet Scope Dove, Super ~3 Daily 8 Field-level anomaly detection,

Dove precision irrigation, damage

assessment
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accurately recording key crop growth phases (phenology),
which can happen in a very short time frame.l'"” From the
adjusted spectral reflectance data, a broad array of
biophysical parameters can be calculated. The most frequent
and effective of these are Vegetation Indices and Land
Surface Vegetation Indices (VIs) are straightforward yet
reliable metrics derived by mathematically combining the
reflectance values of two or more spectral bands. They are
formulated to amplify the spectral signal of green vegetation
while reducing interference from other elements like soil
brightness or atmospheric conditions. The most commonly
used VI is the Normalized Difference Vegetation Index
(NDVI), which is computed from the near- infrared(NIR)
and red bands with the formula."* Healthy, thriving vegetation
strongly absorbs red light for photosynthesis and reflects NIR
light, leading to high NDVI values (nearing +1). In contrast,
stressed vegetation or bare soil reflects more red light and less
NIR, resulting in lower NDVI values. Other significant
indices include the Enhanced Vegetation Index (EVI), which
is less likely to saturate over thick canopies, the Soil-
Adjusted Vegetation Index (SAVI), which lessens the effect
of the soil background, and the Normalized Difference Water
Index (NDWI), which is responsive to the water content in
plant canopies.

Land Surface Temperature (LST) is calculated from
measurements in the thermal infrared part of the
electromagnetic spectrum. LST is a crucial indicator of the
surface energy balance and is very responsive to water
availability. When plants have enough water, they cool down
through transpiration. When they are short of water, their
stomata close to save water, which makes their canopy
temperature increase. Consequently, LST, especially when
examined with VIs, is a potent tool for tracking drought,
evaluating crop  water stress, and calculating
evapotranspiration rates.'3

3. The rise of artificial intelligence in agricultural
analytics

3.1 Machine learning and deep learning: from prediction
to prescription

Artificial Intelligence (Al) is a wide-ranging area of
computer science cantered on developing systems that can
carry out tasks that usually need human intelligence, like
learning, reasoning, and solving problems. In this domain,
Machine Learning (ML) and its sophisticated subfield, Deep
Learning (DL), have become the main drivers of the data
transformation in agriculture.

Machine Learning (ML) is a part of Al that concentrates
on creating algorithms that can learn from and make
forecasts on data without being specifically programmed for
a certain task.!'*l Instead of adhering to a strict set of rules, an
ML model is "trained" on a vast dataset of past examples.
During this training, the algorithm finds underlying patterns
and connections in the data. After training, the model can use
this acquired knowledge to make forecasts or classifications
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on new, unobserved data. This capacity to generalize from
previous experience makes ML highly suitable for
agricultural uses, where conditions are intricate and
fluctuating.

Deep Learning (DL) is a more specialized area within ML
that employs a particular kind of architecture known as an
artificial neural network. What makes DL "deep" is its use of
several layers of connected nodes (or "neurons"), which
enables the model to learn features from the data in a
structured way. For instance, when looking at an image of a
crop, the first layers of a deep neural network might learn to
identify basic features like edges and color. Later layers merge
these basic features to learn more intricate patterns, such as
textures and shapes, and even deeper layers can learn to
recognize whole objects, like a sick leaf or a certain kind of
weed. This ability for automatic and structured feature
extraction makes DL especially effective for analyzing large,
unstructured datasets like remote sensing images, where the
important patterns might be too faint or complex for a person
to define by hand.['"

The main objective of using these Al technologies in
agriculture is to shift from conventional, uniform
management methods to a data-informed, prescriptive
strategy. The development of Al's function can be viewed as
amove from descriptive to predictive, and then to prescriptive
analysis. At first, Al models were employed for descriptive
purposes like categorizing crop types or mapping soil
differences.l's The subsequent stage was predictive, utilizing
historical data to forecast future results like end-of-season
yield." The current leading edge is prescriptive analytics,
where Al systems not only foresee a problem but also suggest
a particular, optimized solution, such as creating a variable-
rate fertilizer map or an automated irrigation plan.l'l This
change is expected to greatly improve operational
effectiveness, boost profitability, and lessen the
environmental effects of farming activities.['Y) Nevertheless,
for a farmer to rely on and follow a prescriptive suggestion
from an Al, a high level of trust in the model's logic is
necessary, which emphasizes the increasing significance of
model transparency and clarity.['”!

3.2 Core Al applications: crop classification, yield

forecasting, and stress detection

The use of Al in agriculture is extensive, but a few key areas

have experienced the most notable progress and influence.

These applications directly tackle the main difficulties

presented by climate change, such as managing resources

effectively, forecasting production results, and addressing
environmental pressures.

e Crop management and recognition: A basic task in
agricultural surveillance is to determine what is being
grown and where. Al models, especially DL classifiers,
can examine satellite or aerial photos to precisely map
the spatial layout of various crop types over large areas.
This data is crucial for national and regional
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governments in agricultural planning, distributing
resources, and guaranteeing food security. At the farm
level, Al aids in crop management by assisting in the
choice of the most appropriate crop varieties for
particular environmental settings. By analyzing large
datasets of genetic data, past weather trends, and soil
features, ML models can pinpoint crop varieties that are
more likely to be resistant to local diseases and resilient
to expected climate challenges like drought or heat.['¢]

e Yield prediction/forecasting: Accurately predicting
crop yields before the harvest is one of the most vital and
beneficial uses of Al in agriculture. ML models are
trained on historical data that encompasses a broad
spectrum of variables, such as weather trends
(temperature, rainfall), soil characteristics, management
methods, and time-series of remote sensing data (e.g.,
vegetation indices). By understanding the intricate, non-
linear connections between these elements and past yield
results, the models can produce dependable forecasts for
the next harvest. These predictions are extremely
valuable for a variety of stakeholders: farmers can use
them to make improved marketing and storage choices;
insurance companies can use them to evaluate risk; and
governments can use them to foresee food shortages and
handle strategic reserves.

e Stress and disease detection: A highly promising
application of Al, particularly DL- powered computer
vision, is the early identification of crop stress. DL
models, especially Convolutional Neural Networks
(CNNs), can be trained on extensive image collections
to identify the subtle visual signs of different stressors,
including nutrient shortages, water stress, pest invasions,
and diseases.l'” These models can often spot these
problems from high- resolution UAV or satellite images
days or even weeks before the symptoms are noticeable
to the human eye. This early detection capability permits
prompt and focused actions, such as the accurate
application of fertilizers or pesticides only to the
impacted parts of a field. This method, known as
precision agriculture, not only enhances the effectiveness
ofthe treatment and reduces crop loss but also markedly
cuts down on the overall use of chemical inputs,
resulting in lower expenses for the farmer and a smaller
environmental footprint.!"’

3.3 A survey of dominant models: from random forests to
convolutional neural networks

The advancement of Al applications in agriculture has been
paralleled by a development in the complexity and power of
the models used. This pattern mirrors the growing
accessibility of large- scale datasets and the increasing
strength of computing hardware, which have facilitated a
move from conventional, understandable ML algorithms to
more potent but intricate DL structures.

< GR Scholastic

3.3.1 Traditional machine learning models

These models are the basis for many predictive uses in
agriculture and are still commonly employed, especially
when handling structured, tabular data.

Linear Regression: This is one of the most basic
models, used to forecast a continuous result (like crop
yield) based on its linear connection with one or more
input variables (like total rainfall or average
temperature).'¥!  Although it has limitations in
capturing complex relationships, it provides a helpful
starting point.

Support Vector Machines (SVMs): These are strong
and adaptable models that can be used for both
classification (e.g., crop type) and regression (e.g.,
yield prediction). SVMs are especially good at
handling high-dimensional data, where there are
numerous input features.

Tree-Based Models: This group of models, which
includes Decision Trees, Random Forests, and
Gradient Boosting Machines, is very popular in
agricultural analysis. A Random Forest (RF) is an
"ensemble" model that functions by creating many
individual decision trees during training and then
providing the class that is the most common among the
classes (classification) or the average prediction
(regression) of the individual trees. This ensemble
method makes RF very resistant to overfitting and
able to manage complex, non-linear data with great
accuracy. It is often seen as the "go-to" model for
tasks like crop classification and yield prediction from
satellite data.['®]

3.3.2 Deep learning models

These models have become the leading choice for
applications that involve unstructured data, particularly
images. Their capacity to learn features from the data
automatically gives them a major performance edge.

Convolutional Neural Networks (CNNs): CNNs are
the clear leaders in image analysis tasks. Their design
is specifically tailored to process grid-like data, such
as images, by using "convolutional" layers that
automatically learn and identify spatial arrangements
of features. This makes them extremely well-suited
for analyzing remote sensing data for purposes like
land cover mapping, crop classification, and spotting
the visual signs of disease from aerial photos.

Recurrent Neural Networks (RNNs): In contrast to
CNNs, which are made for spatial data, RNNs are
designed to work with sequential data. They have an
internal "memory" that lets them process sequences of
inputs, making them perfect for time-series analysis.
In agriculture, RNNs and their more sophisticated
version, Long Short-Term Memory (LSTM)
networks, are used to examine temporal patterns in
data, like daily weather readings or weekly vegetation
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index values from satellites, to model crop growth
over a season and forecast the end-of-season yield."”!

e Hybrid Models: To combine the advantages of
various architectures, researchers have created hybrid
models. A notable example is the CNN-LSTM
model, which merges a CNN front-end for extracting
spatial features from individual images in a time series
with an LSTM back-end to model the temporal
connections between those features. This spatio-
temporal method has shown better accuracy in
forecasting crop yield from sequences of satellite
images.[?%!

4. Synergistic applications: integrating Remote Sensing
(RS) and Al for climate impact assessment

The real groundbreaking power in contemporary agricultural
surveillance comes not from Remote Sensing (RS) or
Artificial Intelligence (Al) used separately, but from their
combined integration. In this approach, RS functions as the
main data gathering tool, supplying a constant flow of
observations about the Earth's surface. Al, on the other hand,
acts as the analytical core, handling this huge and intricate
data to find significant patterns, create predictive insights, and
convert them into practical intelligence for decision-makers.
This combined workflow constitutes a full pipeline, from data
collection to real-world application, and is the basis for
nearly all sophisticated uses in climate-resilient agriculture.
The procedure starts with gathering raw data from different
platforms, mainly satellites and UAVs. This raw imagery,
however, is not ready for immediate use and needs to go
through several preprocessing steps to correct for
atmospheric effects, geometric errors, and sensor flaws.!'%
After the data is cleaned, the next important phase is featuring
engineering, where specialized knowledge is used to pull out
relevant biophysical variables from the corrected images.
This includes calculating metrics like vegetation indices
(e.g., NDVI, EVI) from multispectral data or determining
Land Surface Temperature (LST) from thermal bands. These
engineered features, which show the health, vitality, and
stress levels of plants, are the main inputs for the Al models.
The AI/ML model is then trained with these features along
with corresponding "ground truth" data, like historical yield
data or soil moisture readings taken in the field. After
thorough training and validation, the model can be used to
make predictions on new data, producing outputs like detailed
yield maps, water stress forecasts, or disease risk evaluations.
The last, vital step is to change these model outputs into a
format that is easy for the end-user to understand and act on,
such as a variable-rate application map for a tractor's GPS or
a straightforward irrigation warning sent to a farmer's phone.
This complete process, shown in a workflow diagram,
illustrates how raw satellite data is gradually improved
through a mix of remote sensing science and machine
learning into concrete decision-support tools.
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4.1 Monitoring drought and water scarcity

Evaluating and managing water availability is likely the most
crucial task in helping agriculture adapt to climate change.
The combination of RS and Al offers a strong, non-invasive
toolkit for tracking drought and crop water stress over
extensive areas. RS satellites consistently supply key data,
with vegetation indices from multispectral sensors showing
the effect of water stress on plant health, and LST from
thermal sensors giving a direct reading of surface
temperature, which increases when plants cannot cool
themselves by transpiring.

Although these separate data streams are useful, their real
strength is shown when they are cleverly combined. One of
the most successful and commonly used methods for this is
the NDVI-LST feature space. This technique involves
making a scatter plot of pixel values from an area, with NDVI
on the x-axis and LST on the y-axis.!"¥] The resulting pattern
of points usually creates a triangular or trapezoidal shape.
The edges of this shape have significant physical
interpretations: the "warm edge" indicates pixels with the
highest temperature for a certain amount of vegetation,
matching dry, water-scarce conditions. The "wet edge"
shows pixels with the lowest temperature for a certain
amount of vegetation, corresponding to well-watered
conditions with maximum transpiration. The location of any
single pixel in this feature space gives a solid, relative
indication of its water availability. Al and statistical models
use this connection to calculate quantitative measures like the
Soil Moisture Index (SMI), which can be mapped to produce
detailed, field-level evaluations of water stress.l'¥] This
method is a clear example of how combining different data
types-in this case, a vegetation metric and a thermal metric-
can produce a much more effective indicator of crop
condition than either could on its own.

Beyond tracking current situations, the merging of
geospatial data and Al, often called GeoAl, is facilitating the
creation of predictive drought forecasting and early warning
systems. ML models, like Random Forest, can be trained to
combine data from various satellite sensors (e.g., MODIS for
temperature, TRMM for rainfall, SMAP for soil moisture)
with climate model outputs to generate high-resolution
forecasts of soil moisture and drought risk.?'! These systems
permit proactive instead of reactive management, allowing
water managers and farmers to make timely choices, such as
changing irrigation schedules or switching to more drought-
resistant crops, long before a drought's full effects are
realized.?"l Additionally, Al-driven analysis of high-
resolution RGB, thermal, and hyperspectral images from
UAVs enables the accurate identification of water stress at
the sub-field level, directing precision irrigation methods that
optimize water use and increase yield.l?

4.2 Assessing vegetation health and phenological shifts
Observing the health and growth phases (phenology) of crops
is essential for evaluating agricultural output and spotting the
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effects of climate fluctuations. Vegetation Indices (VIs)
calculated from satellite data are the main instruments for this
purpose. Indices like the NDVI act as a substitute for
measuring vegetation greenness and biomass, while more
sophisticated metrics like the Vegetation Condition Index
(VCI) and the Vegetation Health Index (VHI) offer a more
detailed evaluation of vegetation health by comparing present
conditions to the historical range for a particular place and
time of year. The VCI adjusts the current NDVI value against
its long-term minimum and maximum, effectively removing
the impact of local geography and seasons to pinpoint
unusual conditions that suggest stress. The VHI improves on
this by adding LST data, giving a combined measure of
health that considers both moisture and temperature stress.
The high frequency of visits by satellites like MODIS and
Sentinel-2 allows for the creation of dense time-series of
these indices, enabling continuous observation of crop
growth throughout the season. This temporal data is where
Al models, especially those designed for sequential data like
RNNs and LSTMs, are most effective. These models can
examine the typical phenological curve of a crop—the
pattern of greening, peak growth, and decline—and spot
slight variations from the usual pattern. Such irregularities
can indicate the presence of stress or, over time, point to
fundamental changes in the timing of growing seasons, a key
effect of climate change.® By learning the temporal patterns
of different crops and conditions, these Al models can offer
early alerts of potential issues and help to better understand
how agricultural systems are reacting to a changing climate.

4.3 Predicting crop yield variability

Crop yield prediction is a key application of combined RS
and Al, with major consequences for global food security,
market stability, and agricultural insurance. The basic method
involves using a varied set of input features, mainly from RS
and weather data, to train an ML model that can accurately
forecast the final yield.

The input features for these models are diverse. Time-
series of VIs (like NDVI) during the growing season are a
primary indicator of crop health and biomass growth. LST
data offers information on temperature and water stress.
These RS-derived variables are usually mixed with
meteorological data (e.g., rainfall, temperature, solar
radiation) and static data on soil properties (e.g., texture,
organic matter content).?” The ML model, which can vary
from traditional algorithms like Random Forest and Support
Vector Regression to more advanced DL architectures, is
trained on historical records of these features and their related
final yields.

Recent progress has indicated that DL models, in
particular, provide better performance for this task. CNNs
can automatically find relevant spatial patterns in satellite
imagery that suggest yield potential, while hybrid CNN-
LSTM models can handle both the spatial and temporal
aspects of the data at the same time, tracking the changes in
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crop conditions throughout the season. These advanced
models can learn the complex, non-linear relationships
between environmental factors and crop growth, resulting in
more precise and dependable yield forecasts.[' The capacity
to produce accurate, pre-harvest yield predictions allows for
proactive planning at all levels, from a farmer managing
harvest logistics to a government agency handling national
food supplies in the face of climate fluctuations.

4.4 Early detection of pest and disease outbreaks
Climate change is modifying the spread and intensity of
agricultural pests and diseases, presenting new difficulties for
crop protection. The combination of high-resolution remote
sensing and Al- driven computer vision provides a strong new
defense. High-resolution images, usually taken from UAVs
with multispectral or hyperspectral sensors, can detect slight
changes in the spectral reflectance of plant leaves caused by
the physiological stress from a pest or pathogen. These
spectral changes often happen long before any symptoms,
like spots or color changes, are visible to the naked eye.
This is where the pattern recognition skills of DL models,
especially CNNs, are crucial. These models are trained on
large, labeled datasets with images of healthy plants and
plants affected by different diseases and pests. Through this
training, the CNN learns to spot the specific spectral and
spatial signs linked to particular problems. When used, the
model can analyze new images and classify plants with high
accuracy, often over 95% for certain diseases. This allows for
the creation of exact maps showing the location and size of
an outbreak in a field. This information permits a quick and
focused response, like applying pesticides precisely only to
the affected areas. This targeted method not only boosts the
effectiveness of the treatment and cuts crop losses but also
greatly reduces the total amount of chemical inputs used,
leading to significant cost savings and a smaller
environmental impact of farming. The use of different
sensing platforms-satellites for wide-area observation to find
anomalies and UAVs for detailed examination of those
anomalies-forms a layered, multi-scale monitoring system.
This hierarchical method, where each platform makes up for
the weaknesses of the others, is key to building a thorough
and effective crop protection plan against increasing climate-
related dangers.

5. Advanced frontiers:
agricultural monitoring
In addition to the main applications, the areas of remote
sensing and artificial intelligence are quickly advancing,
with new methods and platforms appearing that promise to
offer even more advanced, scalable, and predictive tools for
agricultural surveillance. These new frontiers are aimed at
overcoming the drawbacks of single-sensor systems, making
planetary-scale data processing more accessible, and
moving from analyzing past climate effects to accurately
forecasting future weather conditions.

pushing the boundaries of
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5.1 Multi-sensor data fusion: creating a more complete
picture
No single remote sensing sensor can supply all the data
required for thorough agricultural surveillance. Optical
sensors give detailed spectral information but are blocked by
clouds; radar can penetrate clouds but offers different data on
structure and moisture; and LiDAR provides detailed 3D
information but is often costly to use. Multi-sensor data
fusion is an advanced method that seeks to overcome these
separate limitations by cleverly merging data from several,
complementary sensor types to form a single, combined
dataset that is more informative and dependable than any of
its individual parts.l#

A typical example is the merging of optical and radar
data. By combining the high-resolution spectral data from
an optical satellite like Sentinel-2 with the all-weather
imaging ability of a radar satellite like Sentinel-1, it is
possible to create a continuous time-series of observations
for crop monitoring, even when it is cloudy and optical data
is not available. This is especially important in tropical areas
where constant cloud cover can greatly reduce the usefulness
of optical sensors. Data fusion can be carried out at several
different levels of complexity(?4l:

o Pixel-level fusion means merging the raw pixel values
from various sensors at the very start of processing.

e Feature-level fusion, the most frequent method, involves
first pulling out key features (like vegetation indices from
optical data and backscatter coefficients from radar data)
from each sensor separately and then using these features
as inputs for a classification or prediction model.

e Decision-level fusion works at the highest level of
complexity, where separate decisions are made based on
each data source, and then a final, unified decision is made
by combining these separate outputs.

By using the complementary advantages of different
sensors, data fusion is greatly enhancing the accuracy of key
agricultural applications, such as crop type classification, soil
property mapping, and the evaluation of plant health and
water stress.

5.2 Cloud-based geospatial platforms: enabling
planetary-scale analysis with google earth engine

In the past, a major obstacle in remote sensing research was
the practical difficulty of managing data. The huge amount of
satellite imagery needed for large-area, long-term studies
made analysis computationally too demanding for all but the
most well-equipped institutions. This situation has been
completely changed by the rise of cloud-based geospatial
analysis platforms, especially Google Earth Engine (GEE).
GEE is a global-scale platform that merges a multi-petabyte,
constantly updated collection of publicly available satellite
imagery and other geospatial datasets (including the full
archives of Landsat, Sentinel, and MODIS) with a strong,
parallelized cloud computing system. This groundbreaking
model removes the need for users to download and keep
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terabytes of data on their own computers. Instead, users can
create and run complex analysis algorithms directly on
Google's servers through a straightforward web-based API,
with the outcomes sent back to their browser in moments .12°
This has greatly opened up the field of Earth observation,
allowing researchers, non-profits, and government bodies
worldwide to perform analyses on a scale that was
previously unthinkable.? GEE is now extensively used for
a wide variety of agricultural purposes, from mapping
cropland over entire continents and tracking deforestation in
almost real-time to evaluating the regional effects of drought
on food production.?”” This move from local processing to
global, cloud-based platforms marks a fundamental shift in
how remote sensing science is performed. While it has
provided unprecedented analytical capabilities, it also creates
a new reliance on a few large technology companies, posing
significant long-term questions about data control, ongoing
access, and the risk of algorithmic bias becoming embedded
at a systemic level.*®]

5.3 Al-Enhanced climate models: towards hyper-local
and long-range forecasting

The use of Al in the climate field is changing significantly.
While a lot of the attention has been on using Al to study the
effects of weather as recorded by remote sensing data, an
exciting new area involves using Al to create the next
generation of weather and climate forecasting models
themselves.

Conventional weather prediction depends on numerical
weather prediction (NWP) models, which are huge, physics-
based simulations of the Earth's atmosphere. Although very
accurate, these models are computationally demanding,
needing massive supercomputing power to operate. This high
expense and complexity have restricted their availability,
especially for weather agencies in developing nations.?”!

Lately, a new type of Al-driven weather model has
appeared that is set to alter this situation. Models like
Google's GraphCast and Neural GCM, and Huawei's Pangu-
Weather, are trained on decades of past weather data, learning
the basic patterns and dynamics of the atmosphere directly
from observations instead of from explicit physical laws. The
outcomes have been impressive. Once trained, these Al
models can produce highly accurate global forecasts at a
speed that is much faster than traditional NWP models, and
they can be run on a single GPU or even a powerful laptop
instead of a supercomputer.*!

This technological advance is a potential game-changer
for agriculture. It allows for the delivery of hyper-local,
timely, and accurate weather forecasts to farmers in areas that
previously did not have such capabilities. Access to
dependable forecasts for temperature, rainfall, and the chance
of extreme events is vital for making smart decisions about
when to plant, irrigate, fertilize, or take protective actions
against pests.?”! This marks a significant move up the causal
chain: instead of just monitoring the agricultural effects of
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weather after it has happened, Al is now enabling the
proactive prediction of the weather itself, offering a much
more powerful tool for climate adaptation and resilience.

6. Critical challenges and current limitations

Despite the groundbreaking potential of combining remote
sensing and Al, the journey to widespread, effective, and fair
implementation is filled with major difficulties. These
obstacles are not just technical; they are closely linked to
problems with data quality, model dependability, and socio-
economic factors. Recognizing and tackling these limitations
is crucial for directing future research and making sure that
these powerful technologies fulfill their promise for everyone
in the agricultural sector.

6.1 The data dilemma: heterogeneity, quality, and scarcity

The saying "garbage in, garbage out" is especially true in the

context of data-driven Al. The effectiveness of even the most

advanced algorithm is fundamentally limited by the quality,
amount, and representativeness of the data it is trained on. In
agricultural remote sensing, the data situation

is full of challenges.

e Heterogeneity: A main technical problem is combining
data from many different sources. Merging images from
various satellites, UAVs, and ground sensors needs
complex harmonization processes to account for large
differences in spatial resolution, temporal frequency,
spectral features, and data formats. Creating a single,
consistent, ready-to-use dataset from these varied sources
is a difficult task that requires considerable expertise and
computing power.

¢ Quality and Availability: The quality of remote sensing
data can be inconsistent. Optical satellite imagery, the
most common data source, is often blocked by clouds,
particularly in tropical and subtropical areas, causing
large gaps in time-series data. All data is affected by
atmospheric interference and needs careful calibration
and correction to be trustworthy.%

e Scarcity of Ground Truth: The most significant issue is
likely the shortage of high-quality, labeled ground-truth
data. Al models, especially supervised learning models,
need large amounts of accurate, on-the-ground data for
training and validation. For instance, a yield prediction
model must be trained on thousands of examples of
remote sensing features matched with actual, measured
yield data from those exact locations. This ground data is
often costly, time-consuming, and labor-intensive to
gather.Bl As a consequence, current datasets are often
small and geographically limited, leading to what is
known as "data poverty" in many parts of the world,
especially in developing countries and for smallholder
farming systems. This shortage not only restricts model
accuracy but also creates significant bias, as models are
mainly trained on data from large, well-funded industrial
farms in North America and Europe, making them less
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suitable for the varied agricultural systems found in other
places.

6.2 The model transferability problem: from local success
to global application

A direct result of the data scarcity and bias issue is the
difficulty of model transferability, also known as
generalizability. An Al model trained on data from one
particular agro-climatic area often does not perform well
when used in a different area. This happens because the
model has learned the specific connections between
environmental variables, management methods, and crop
reactions that are unique to its training environment. When
faced with new crop types, different soil conditions,
unfamiliar climate patterns, or other farming methods, its
predictive ability quickly decreases.??

For example, a model designed to predict corn yield in the
U.S. Midwest is not likely to be effective for predicting maize
yield in Sub-Saharan Africa, where fields are smaller,
intercropping is frequent, and climate challenges are
different. This inability to transfer is a major obstacle to
creating scalable, affordable solutions for global agriculture.
It means that models cannot be developed once and then used
everywhere; they need significant and expensive regional
adjustments, fine-tuning, or complete retraining with local
data to be effective. Overcoming this problem is a key focus
of current research, with an emphasis on creating more robust
models that can learn more basic, transferable relationships
or adapt to new areas with little local data.

6.3 The "Black Box" issue: the need for transparency and
trust

Many of the most effective and accurate Al models,
especially in deep learning, operate as "black boxes."
Although they can make very accurate predictions, their
internal decision-making process is often unclear and hard
for humans to understand.l' A deep neural network might
predict that a certain part of a field is at high risk for disease,
but it cannot easily explain why it came to that conclusion.
This lack of clarity is a major hurdle to adoption in a high-
stakes field like agriculture.* Farmers, agronomists, and
policymakers are understandably hesitant to base important
and expensive decisions on the advice of a system whose
logic they cannot comprehend or check. Trust is essential for
adoption. Moreover, the black box nature of these models can
hide and continue hidden biases from the training data. If a
model is trained on unrepresentative data, it may make
consistently wrong predictions for certain groups or areas,
leading to unfair or even damaging results.’3 Without
transparency, finding and fixing these biases is very hard.

6.4 Practical barriers: cost, infrastructure, and scalability
In addition to the technical and data-related difficulties, a
number of practical obstacles prevent the broad use of RS
and Al technologies, leading to a notable "socio-technical

J. Inf. Commun. Technol. Algorithms, Syst. Appl., 2025,1, 25312 | 11


https://gr-journals.com/about_gr.php

Review article

Volume 1 Issue 3 (December 2025)

gap." The advantages of these new technologies risk being

mainly enjoyed by large, well-funded operations, which

could worsen current inequalities in the global food system.

o Cost and Infrastructure: The initial spending needed for
sensors, UAVs, specialized software, data storage, and
high-performance computing can be too high for
smallholder farmers and public organizations in low-
income countries.*

e Connectivity: Many advanced agricultural technologies
depend on real-time data transfer and access to cloud-
based platforms. However, dependable, high-speed
internet is still a major problem in many rural areas
worldwide, which limits the practicality of using these
systems.

e Technical Expertise: Using, running, and keeping these
complex systems in good working order requires special
skills. There is a large global deficit of people with
knowledge in agronomy, remote sensing, and data
science, which creates a "digital literacy" gap that stops
many potential users from making effective use of these
tools.** This shows that successful technology use must
be paired with strong efforts in education, training, and
skill-building to make sure the solutions are available and
usable for all involved.

7. Future outlook: towards integrated, explainable, and
actionable systems

Tackling the significant challenges mentioned in the last
section calls for a forward-thinking research plan aimed at
making RS and Al systems more open, comprehensive, and
useful for end- users. The future of this area is in moving past
purely technical goals of predictive accuracy and toward
creating integrated systems that are dependable, fair, and truly
helpful for making decisions on the ground. This change
points to a future where technology helps to enhance, not
substitute, human knowledge, promoting a cooperative
relationship between machine intelligence and the local
wisdom of farmers.

7.1 Explainable AI (XAI): Opening the black box for
stakeholder trust

The "black box" issue is a major roadblock to the use of
advanced Al models. In reaction, the field of Explainable Al
(XAI) has developed with the clear aim of creating methods
to make the decisions of complex models more open and
understandable, without greatly reducing their predictive
accuracy. XAl is not a single technique but a range of
approaches created to answer the question: "Why did the
model make this specific decision?"

These methods can be generally grouped. Some, like
LIME (Local Interpretable Model-agnostic Explanations)
and SHAP (SHapley Additive exPlanations), function by
clarifying individual predictions. They can, for instance,
show which particular input features (e.g., high temperature
in July, low NDVI in August) had the most impact on a
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model's decision to predict a low yield for a certain field.
Other methods are made specifically for computer vision
models.

Grad-CAM  (Gradient-weighted Class  Activation
Mapping), for example, creates a visual "heatmap" that can
be placed over an input image, showing the exact pixels or
areas of the image that a CNN concentrated on when making
its classification.

By oftering this level of detail, XAI can change a black
box prediction into a piece of information that a human
expert-whether a farmer, an agronomist, or a policymaker-
can carefully assess. This capacity to examine the model's
logic is key to establishing trust and confidence in Al-driven
advice. Additionally, XAl acts as a strong diagnostic tool for
developers, helping to find hidden biases in the data or errors
in the model's reasoning. The inclusion of XAl is a crucial
move in advancing Al for agriculture from just a predictive
tool to a dependable and trustworthy partner in decision-
making.

7.2 Integration with socio-economic data: a holistic view
of vulnerability and resilience

The effects of climate change are not just a result of physical
exposure; they are shaped by the socio-economic situation of
the people affected. A community's susceptibility to an event
like a drought is determined not only by how severe the lack
of rain is but also by factors such as poverty levels, access to
markets, the availability of irrigation systems, and social
support networks. To create truly effective and fair
adaptation plans, it is therefore crucial to go beyond just
environmental monitoring and combine remote sensing data
with socio-economic data.

This combination allows for a more complete and
detailed understanding of agricultural systems and their
weaknesses. Organizations like NASA's Socioeconomic
Data and Applications Center (SEDAC) are key in this effort
by creating and sharing global, gridded datasets on important
socio- economic factors like population density, poverty
levels, infrastructure, and market access. When these datasets
are merged with RS-derived data on climate risks (e.g.,
drought maps) and agricultural output (e.g., yield maps), it is
possible to carry out thorough vulnerability studies. For
instance, analysts can pinpoint "hotspots" that are not only
facing severe climate stress but are also inhabited by people
with low ability to adapt.’>! This comprehensive view is vital
for directing interventions, distributing resources more
efficiently, and creating policies that tackle the fundamental
causes of vulnerability, making sure that climate adaptation
measures support those who are most in need.

7.3 developing localized Climate-Smart Decision-Support
Systems (DSS)

The true measure of success for these advanced technologies
is their capacity to provide real advantages to farmers. This
means turning complex data and models into useful, easy-to-
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access, and localized Decision-Support Systems (DSS). The
main framework for creating these systems is increasingly
Climate-Smart Agriculture (CSA), a combined approach that
aims to achieve three related goals at the same time:
sustainably boosting agricultural productivity, improving the
resilience of farming systems (adaptation), and cutting down
on greenhouse gas emissions when possible (mitigation).

Effective DSS cannot be a single solution for everyone.
They must be specifically designed for the particular agro-
ecological, climatic, and socio-economic situation where
they will be used.**! A DSS for a small-scale maize farmer in
a semi-dry area of Africa will have very different needs from
one made for a large commercial wheat farmer in a temperate
region. The creation of these tools must therefore be a
collaborative effort, developed with farmers, extension
workers, and other local stakeholders to make sure the
information given is relevant, timely, and practical in their
specific working conditions. These systems are designed to
offer very local advice, using real-time data from in-field
sensors and high-resolution remote sensing, along with Al-
improved weather forecasts, to provide direction on key
management choices.?! This could include suggestions on the
best planting times, exact irrigation schedules, variable-rate
fertilizer use, or early alerts of pest and disease dangers. By
incorporating advanced science into simple-to-use tools,
these localized DSS form the final, crucial connection in the
process from global satellite data to better local results,
enabling farmers to create more productive, sustainable, and
resilient agricultural systems. This development shows a
wider change in how success is evaluated-moving from just
predictive accuracy to a more complete assessment that
includes transparency, fairness, usability, and real-world
impact.

8. Conclusion

The combination of climate change and increasing global
food needs has put immense strain on the world's farming
systems. This review has brought together a wide range of
research showing the groundbreaking potential of merging
Remote Sensing (RS) and Artificial Intelligence (Al) to
tackle this major issue. RS offers an unmatched ability for
large-scale, ongoing surveillance of agricultural areas,
supplying vital data on plant health, water levels, and soil
states. Al, in turn, provides the analytical strength to process
this huge flow of data into predictive insights and practical
intelligence. Their combined effect is creating a major shift
towards a more accurate, data-informed, and adaptable type
of agriculture, with proven success in areas from crop yield
forecasting and drought surveillance to the early spotting of
pests and diseases. New developments like multi-sensor data
fusion, cloud-based platforms such as Google Earth Engine,
and Al-improved climate models are pushing the limits of
what can be achieved, allowing for more dependable analyses
on a global scale and offering proactive, very local forecasts.
These technologies are no longer just ideas; they are
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becoming mature instruments that are the basis of modern
climate-smart agriculture. However, the journey to using this
potential globally is limited by major and varied difficulties.
The dependability of Al models is fundamentally restricted
by the supply of high-quality, representative training data-a
resource that is still limited and not fairly distributed. The
difficulty of transferring models across different agro-
climatic areas prevents the creation of scalable solutions.
Furthermore, the "black box" aspect of many advanced
algorithms creates a trust issue, while practical problems
related to cost, infrastructure, and technical knowledge
restrict access for the most at-risk farming communities.
These difficulties highlight a key fact: technological progress
by itselfis not enough. The future of this area, therefore, must
be shaped by a united effort to create systems that are not
only precise but also open, fair, and practical. The move
towards Explainable Al (XAI) is a crucial step in clarifying
the black box, building the trust needed for broad use. The
inclusion of socio- economic data is vital for moving from
just biophysical monitoring to a complete understanding of
vulnerability, making sure that actions are effectively
targeted. In the end, the aim must be the joint creation of
localized, climate-smart decision-support systems that
provide farmers with timely, relevant, and wusable
information, enhancing their knowledge rather than trying to
substitute it. To set a course for a truly climate-resilient
agricultural future, a two-fold commitment is needed.
Researchers and technologists must keep innovating,
creating more robust, transferable, and understandable
models. At the same time, policymakers, development
organizations, and the private sector must invest in the
essential foundations of data infrastructure, digital skills, and
collaborative design. By closing the divide between
advanced science and real-world conditions, the powerful
combination of remote sensing and artificial intelligence can
be used to help ensure a sustainable and food-secure future
for a world facing a changing climate.
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