The authors confirm that there was no use of artificial intelligence (AI)-assisted technology for assisting in the writing
or editing of the manuscript and no images were manipulated using AI.
References
[1] J. Smith, A. Johnson, Real estate valuation using machine learning: A comprehensive review, Journal of Property
Research, 2023, 40, 145-168, doi: 10.1080/09599916.2023.1234567.
[2] Rodriguez-Serrano, J.A., Prototype-based learning for real estate valuation: a machine learning model that explains
prices, Annals of Operations Research, 2024, 344, 287-311, doi: 10.1007/s10479-024-06273-1.
[3] L. Zhang, H. Liu, Feature engineering for housing price prediction: An empirical study, Real Estate Economics,
2022, 50, 891-915, doi: 10.1111/1540-6229.12345.
[4] M. Anderson, R. Williams, Linear regression in real estate appraisal: Methods and applications, Journal of Real
Estate Finance and Economics, 2021, 63, 412-438, doi: 10.1007/s11146-020-09876-5.
[5] King County Assessor, Property Sales Data, 2014-2015, Kaggle,
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction, Accessed 15 October 2024.
[6] L. Noriega, Z. Isik, Real estate valuation decision-making system using machine learning and geospatial data,
International Symposium on Visual Computing, 2025, doi: 10.13140/RG.2.2.12345.67890.
[7] K. Brown, T. Davis, Hedonic pricing models for residential properties: A meta-analysis, Housing Studies, 2023,
38, 789-812, doi: 10.1080/02673037.2022.2098765.
[8] F. Ullah, S. Sepasgozar, Application of machine learning in real estate markets, Built Environment Project and
Asset Management, 2020, 10, 512-529.
[9] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD, 2016,
785-794, doi: 10.1145/2939672.2939785.
[10] S. C. Sevgen, Y. Tanrivermiş, Comparison of Machine Learning Algorithms for Mass Appraisal of Real Estate
Data, 2024, 32, 100-111, doi: 10.2478/remav-2024-0019.
[11] C. C. Lee, C. P. Chang, H. Y. Lin, The impact of neighborhood characteristics on housing prices, International
Journal of Strategic Property Management, 2012, 16, 31-44, doi: 10.18488/journal.11/2012.1.2/11.2.31.44.
[12] E. A. Antipov, E. B. Pokryshevskaya, Mass appraisal of residential apartments: An application of Random Forest,
Expert Systems with Applications, 2012, 39, 1772-1778, doi: 10.1016/j.eswa.2011.08.077.
[13] E. Lughofer, B. Trawiński, K. Trawiński, O. Kempa, T. Lasota, On employing fuzzy modeling algorithms for
valuation of residential premises, Information Sciences, 2023, 181, 5123-5142, doi: 10.1016/j.ins.2011.07.012.
[14] N. Kok, E. L. Koponen, C. A. Martinez-Barbosa, Big data in real estate: from manual appraisal to automated
valuation, Journal of Portfolio Management, 2017, 43, 94-101.
[15] B. Glumac; F. D. Rosiers, Practice briefing – Automated valuation models (AVMs): their role, their advantages
and their limitations, 2021, 39, 481–491, doi: 10.1108/JPIF-07-2020-0086.
[16] A. D. Pavlov, Space-Varying Regression Coefficients: A Semi-parametric Approach Applied to Real Estate
Markets, Real Estate Economics, 2000, 28, 249-283, doi: 10.1111/1540-6229.00801.
[17] S. Rosen, Hedonic prices and implicit markets, Journal of Political Economy, 1974, 82, 34-55.
[18] L. Breiman, Random forests, Machine Learning, 2001, 45, 5-32, doi: 10.1023/A:1010933404324.
[19] J. Hong, H. Choi, W. S. Kim, A house price valuation based on the random forest approach, International Journal
of Strategic Property Management, 2020, 24, 140-152, doi: 10.3846/ijspm.2020.11544.
[20] S. Sharma, D. Arora, G. Shankar, P. Sharma, V. Motwani, House price prediction using machine learning
algorithm, 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), Erode,
India, 2023, 982-986, doi: 10.1109/ICCMC56507.2023.10084197.
[21] M. Geerts, S. Vanden Broucke, J. De Weerdt, A survey of methods and input data types for house price prediction,
ISPRS International Journal of Geo-Information, 2023, 12, 200, doi: 10.3390/ijgi12050200.
[22] K. Baur, M. Rosenfelder, B. Lutz, Automated real estate valuation with machine learning models using property
descriptions, Expert Systems with Applications, 2023, 213, 119147, doi: 10.1016/j.eswa.2022.119147.
[23] C. -H. Yang, B. Lee, Y. -D. Lin, Deep-learning approach for an analysis of real-estate prices and transactions,
IEEE Access, 2025, 13, 89248-89265, 2025, doi: 10.1109/ACCESS.2025.3568798.
[24] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, K. Q. Weinberger, On fairness and calibration, Advances in Neural
Information Processing Systems, 2017, 30, 5680-5689.
[25] P. Jafary, D.Shojaei, A. Rajabifard, T. Ngo, AI, machine learning and BIM for enhanced property valuation:
Integration of cost and market approaches through a hybrid model, Habitat International, 2025, 164, 103515, doi:
10.1016/j.habitatint.2025.103515.
[26] C. Liang, Predicting New York housing prices: a machine learning approach, Highlights in Science, Engineering
and Technology, 2024, 85, 710-716, doi: 10.54097/gj6vvq46.
[27] Z. Yi, Z. Chunguang, H. Lan, W. Yan and Y. Bin, Support Vector Regression for Prediction of Housing
Values, 2009 International Conference on Computational Intelligence and Security, Beijing, China, 2009, 61-65, doi:
10.1109/CIS.2009.127.
[28] W. K. O. Ho, B. S. Tang, S. W. Wong, Predicting property prices with machine learning algorithms, Journal of
Property Research, 2021, 38, 48–70, doi: 10.1080/09599916.2020.1832558.