December 2025 | Volume 1 | Issue 3 | Article No. 25313

GR
JOURNALS

Journal of Information and Communications Technology:
Algorithms, Systems and Applications

GoR

Information and
Communications
Technology:

Research Article | Open Access |@® &

Advanced Feature Engineering for Residential Property
Valuation: A Case Study on King County Housing Data

Aditi Nagayach!* and Atul Samadhiya?

! Data Science Institute, Frank J. Guarini School of Business, Saint Peters University, Jersey City, New Jersey, 07306, USA
2 Business Administration, Executive M.B.A. New England College, New Hampshire, 03242, USA

*Email: anagayach@saintpeters.edu (A. Nagayach)

Abstract

Accurate property valuation is critical for real estate markets, financial institutions, and urban planning. Traditional appraisal
methods are time-intensive and subjective, while complex machine learning models often lack interpretability. This study
addresses these challenges by developing an advanced linear regression framework that balances predictive accuracy with
model transparency through systematic feature engineering. In this study, we present an advanced linear regression
framework for residential property valuation using comprehensive feature engineering techniques. Utilizing the King County
House Sales dataset comprising 21,613 transactions from May 2014 to May 2015, we developed 40 engineered features
including interaction terms, polynomial features, ratio calculations, and location-based composites. After outlier removal
using the interquartile range method, our dataset consisted of 20,467 properties with 55 total features. The optimized linear
regression model achieved a test R? of 0.7198 with a normalized root mean square error (NRMSE) of 0.20 (20% of mean
property value) and mean absolute error of 82,626. Feature importance analysis revealed that basement-to-living ratio,
above-to-living ratio, and geographic coordinates were the most influential predictors. Cross-validation demonstrated model
stability with a mean R? of 0.7316 (+0.0101). This research demonstrates that strategic feature engineering can significantly
enhance linear regression performance for real estate valuation, achieving an average prediction error within 20% of
property values while providing a transparent and interpretable alternative to complex machine learning algorithms.
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Machine learning.
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1. Introduction

Property valuation, also known as real estate appraisal, is the
systematic process of determining the economic value of real
property based on its physical characteristics, location,
market conditions, and comparable transactions.!'?l This
assessment serves as the foundation for numerous financial
and administrative decisions in the housing market.
Residential property valuation specifically focuses on single-
family homes, condominiums, townhouses, and other
dwelling units.’¥ requiring careful consideration of

structural features (square footage, number of bedrooms and
bathrooms, construction quality), locational attributes
(neighborhood characteristics, proximity to amenities,
school districts), and temporal factors (age of property, recent
renovations, market trends). The valuation process
traditionally involves three primary approaches: the sales
comparison approach, which analyzes recent transactions of
similar properties; the cost approach, which estimates
replacement cost minus depreciation; and the income
approach, primarily used for investment properties
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based on potential rental income.

Accurate residential property valuation is fundamental to
real estate markets, mortgage lending, taxation, and
investment decision-making.>* For homebuyers and sellers,
proper valuation ensures fair transaction prices and prevents
market distortions that can lead to housing bubbles or
undervaluation of assets. For financial institutions, proper
valuation ensures appropriate loan amounts and risk
assessments.®!  Overvaluation contributed to the 2008
financial crisis when systematic property overvaluation led
to widespread mortgage defaults.”>!] For governments,
property valuations form the basis of tax assessments
constituting primary revenue sources.'l In accurate
valuations lead to inequitable tax burdens and revenue
shortfalls. Additionally, institutional investors, real estate
investment trusts (REITs), and portfolio managers depend on
reliable valuations for asset allocation, risk management, and
performance evaluation. The insurance industry also requires
accurate property values to determine appropriate coverage
levels and premium calculations.

Traditional appraisal methods rely on expert judgment
and comparable sales analysis, which can be subjective and
time-intensive.['>"3 Licensed appraisers manually select
comparable properties, make subjective adjustments for
differences in features, and synthesize market data based on
professional experience. While benefiting from human
expertise, these approaches suffer from high costs ($300-
$500 per appraisal), time delays, potential bias, and limited
scalability.l'+15] Early automated valuation models (AVMs)
achieved R? values between 60-70%.016.17)

The advent of computational methods in the 1990s and
2000s introduced hedonic pricing models, which use
multiple regression analysis to estimate the implicit prices of
property characteristics. Early automated valuation models
(AVMs) employed by companies like Zillow (Zestimate) and
Redfin demonstrated that statistical methods could provide
rapid, cost-effective valuations at scale. However, these early
models typically achieved R? values between 60-70%,
indicating substantial unexplained variance in property
prices.

Machine learning approaches in the 2010s brought
sophisticated valuation methods.I'>!""] Researchers have
explored various algorithms including decision trees,
Random Forests, Gradient Boosting Machines (GBM),
Support Vector Machines (SVM), and artificial neural
networks. Recent studies show that ensemble methods like
XGBoost and Random Forest can achieve R? values
exceeding 85-90%.12°21 Deep learning approaches have
demonstrated impressive accuracy by processing structured
and unstructured data.?>?¥! However, complex models often
sacrifice interpretability for marginal accuracy gains.?+?!
Regulatory frameworks such as the Financial Institutions
Reform, Recovery, and Enforcement Act (FIRREA) in the
United States require that property valuations be explainable
and defensible, creating tension between model accuracy and
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transparency.
Linear regression remains widely used due to its
transparency, computational efficiency, and ease of

interpretation.?¢?”] The coefficients directly indicate how
each feature impacts property value, making results
accessible to appraisers, lenders, and regulators without
specialized machine learning expertise. However, standard
linear models using raw features typically achieve modest
performance, with R? values around 70%.2%2° This limitation
has driven researchers toward ensemble methods and neural
networks, which can exceed 85% accuracy but lack the
interpretability required by regulatory frameworks and
professional appraisers.

Recent research explores enhancing linear regression
through systematic feature engineering.%3!l rather than
abandoning it for complex algorithms. Feature engineering-
the process of creating new predictive variables from existing
data through mathematical transformations, combinations,
and domain knowledge-can capture non-linear relationships
and interactions within a linear framework. Studies show that
interaction terms, ratio features, polynomial transformations,
and location-based composites can substantially improve
performance.?>»!  This approach preserves model
interpretability while closing the accuracy gap with black-
box methods. This study contributes to this research direction
by developing and evaluating a comprehensive feature
engineering framework for residential property valuation
using linear regression. We hypothesize that strategic feature
creation, combined with careful preprocessing and
regularization, can achieve R? values approaching 75-80%
while maintaining the transparency advantages of linear
models.

This study addresses a critical gap: can strategic feature
engineering enhance linear regression performance while
maintaining interpretability? Using the King County House
Sales dataset from Kaggle,! which provides comprehensive
residential transaction data from the Seattle metropolitan
area, we developed an advanced feature engineering
pipeline. Our approach creates interaction terms between key
variables, polynomial features to capture non-linearity, ratio
features for relative measurements, temporal features for
property age and renovation status, quality indicators,
location-based composites, and logarithmic transformations
to handle skewed distributions.

2. Methods

2.1 Dataset description

The King County House Sales dataset was obtained from
Kaggle,™ containing 21,613 residential property transactions
in King County, Washington, from May 2014 to May 2015.
The dataset includes 21 original features as listed in Table 1.
The dataset exhibited no missing values, facilitating
comprehensive analysis without imputation.®) The target
variable exhibited right-skewed distribution typical of real
estate markets.l4
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Table 1: Dataset features and descriptions for King County house sales data.!

No Feature Name Description Type Unit/Scale

1 id Unique property identifier =~ Categorical Numeric ID

2 date Sale date Temporal YYYYMMDD

3 Price Sale price (target variable) ~ Continuous USD

4 bedrooms Number of bedrooms Discrete Count

5 Number of Continuous Count (0.5
bathrooms

6 sqft_living Living area square footage  Continuous Square feet

7 sqft lot Lot size Continuous Square feet

8 floors Number of floors Continuous Count (0.5

9 waterfront Waterfront property status ~ Binary 0=No, 1 =Yes

10 view View quality rating Ordinal 0-4 scale

11 condition Property condition rating Ordinal 1-5 scale

12 grade Construction quality grade  Ordinal 1-13 scale

13 sqft_above Above-ground Continuous Square feet

14 sqft basement Basement Continuous Square feet

15 yr_built Year property was built Discrete Year (YYYY)

16 yr_renovated Year property Discrete Year (YYYY), 0if never

17 zipcode Property zip code zipcode Property zip code

18 lat Latitude coordinate lat Latitude coordinate

19 long Longitude coordinate Continuous Decimal degrees

20 sqft_livingl5 Average living area of 15 Continuous Square feet

nearest neighbors
21 sqft lotlS Average lot size of 15 Continuous Square feet

nearest neighbors

2.2 Data exploration and preprocessing

Initial exploratory data analysis examined univariate
distributions, bivariate relationships, and correlation
structures.’¢  Price distribution histograms revealed
positive skewness, with concentration in the $300,000-
$600,000 range and a long right tail representing luxury
properties. Outlier detection employed the interquartile range
method.B” with a 1.5 x IQR threshold applied to continuous
features. This process identified and removed 1,146
observations (5.30%), resulting in a cleaned dataset 0f 20,467
properties. Outlier removal was necessary to prevent extreme

values from distorting model coefficients and degrading
prediction accuracy on typical properties.

2.3 Feature engineering

The feature engineering pipeline systematically created 40
new features across ten categories.l$3 Interaction features
capture synergistic effects between complementary
variables.[**#!]  Polynomial features model non-linear
relationships.*?  Ratio features provide scale-invariant
comparisons.*#! Ratio Features: Relative measurements
providing scale-invariant comparisons, including basement-
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Fig. 1: Distribution of property prices showing right-skewed pattern typical of real estate markets, with concentration in the

$300,000-$600,000 range.
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to- living ratio, above-to-living ratio, bathroom-to-bedroom
ratio, and living-to-lot ratio.

Age and Renovation Features: Temporal indicators
calculated as 2015 (dataset end year) minus year built,
creating property age. Binary renovation status and years-
since-renovation features captured modernization effects.
Quality Indicators: Composite metrics combining multiple
quality dimensions, including grade x condition interaction
and high-grade binary indicators (grade > 10).
Location-Based Features: Geographic feature engineering
including latitude x longitude interaction to capture
neighborhood premium effects and distance calculations
from urban centers.

Size Categorization: Discrete bins for living area (small:
<1,500 sq ft; medium: 1,500-2,500 sq ft; large: >2,500 sq ft)
and lot size categories.

Log-Transformed Features: Natural logarithms of skewed
continuous variables (living area, lot size, price) to normalize
distributions and linearize relationships.

Neighborhood Comparison Features: Ratios comparing
property attributes to neighborhood averages, including
living-to-neighborhood ratio and lot-to-neighborhood ratio.
Composite Quality Scores: Weighted combinations of grade,
condition, and view ratings to create holistic quality metrics.
This process expanded the feature space from 21 to 61
variables. Feature selection reduced dimensionality to 55
features by removing highly collinear variables (correlation
> 0.95) and low-variance features.

2.4 Data standardization

All features were standardized using StandardScaler,54¢]
which transforms each feature to have zero mean and unit
variance. This normalization ensures equal contribution and
facilitates convergence.*” The transformation is defined as:

(1)

where x represents the original feature value, p is the feature
mean, o is the standard deviation, and z is the
standardized value.

z=(x-u)/o

2.5 Model development and training

The standardized dataset was partitioned into training (80%,
n=16,373) and testing (20%, n=4,094) sets using stratified
random sampling to preserve price distribution
characteristics across both subsets. (48]

Six models were trained and evaluated:

1. Linear Regression (Ordinary Least Squares): The baseline
model without regularization

2. Ridge Regression (a=1): L2 regularization with minimal
penalty

3. Ridge Regression (0=5): Moderate L2 regularization

4. Ridge Regression (0=10): Moderate-high L2
regularization

5. Ridge Regression (a=50): High L2 regularization

6. Ridge Regression (a=100): Very high L2 regularization
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Ridge regression introduces a penalty term to the loss
function to prevent overfitting by constraining coefficient
magnitudes.[*) The Ridge objective function is:

minimize: ||y - XB|[* + of|p|?

@

where y is the target vector, X is the feature matrix,
represents coefficients, and a is the regularization strength."

2.6 Model evaluation

Model performance was assessed using multiple
metrics.2: R?2 Score, RMSE, MAE, and five-fold cross-
validation 1531,

R? Score (Coefficient of Determination): Proportion of
variance in property prices explained by the model,
calculated as R2=1 - (SS_res / SS_tot), where SS_res is the
residual sum of squares and SS tot is the total sum of
squares.

Root Mean Square Error (RMSE): Square root of the average
squared prediction error, providing error magnitude in
original price units (dollars).

Mean Absolute Error (MAE): Average absolute difference
between predicted and actual prices, less sensitive to outliers
than RMSE.

Cross-Validation: Five-fold cross-validation on the training
set to assess model stability and generalization capability,
reporting mean R? and standard deviation across folds.

2.7 Feature importance analysis

Feature importance was quantified using the absolute values
of standardized regression coefficients. Since all features
were standardized, coefficient magnitudes directly indicate
relative importance in predicting property prices. The top ten
features by absolute coefficient value were identified and
visualized to provide interpretable insights into value drivers.

3. Results

3.1 Model performance comparison

Table 2 summarizes the performance of all six trained models
across training and testing datasets.

The baseline linear regression model achieved the highest
test R? of 0.7198, explaining 71.98% of variance in property
prices. Ridge regression with varying regularization
strengths produced marginally lower test R? values (0.7182-
0.7187), indicating that the engineered features did not
introduce substantial overfitting requiring regularization.
The minimal difference between training R? (0.7356) and test
R? (0.7198) demonstrates good generalization with limited
overfitting. Cross-validation results showed consistent
performance across folds (mean R? = 0.7316, SD = 0.0101),
confirming model stability. Root mean square error of
$108,014 indicates that the model's typical prediction error is
approximately 20% of the mean property price ($540,088).
Mean absolute error of $82,626 suggests that half of
predictions fall within £$82,626 of actual sale prices.
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Model Performance Comparison
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Fig. 2: Comparison of model performance across different regularization strengths, showing minimal variation in test R? values.

Table 2: Model performance metrics.

Model TrainR?  TestR? Test RMSE ($)  Test MAE (§)  CV R? Mean (+SD)
Linear Regression 0.7356 0.7198 108,014.08 82,626.44 0.7316 (x0.0101)
Ridge (0=1) 0.7347 0.7187 108,241.06 - 0.7308 (x0.0108)
Ridge (0=5) 07347  0.7187 108,236.82 - 0.7309 (£0.0108)
Ridge (a=10) 07347 07187 108,238.23 - 0.7309 (:0.0109)
Ridge (a=50) 0.7343 0.7184 108,281.88 - 0.7309 (+0.0108)
Ridge (6=100) 07339 07182 108,328.16 - 0.7307 (20.0107)

Table 3: Summary of key performance metrics for the optimal linear regression model.

Metric Value Meaning
Test R? 71.98% Explains ~72% of price variance
Test RMSE 108,014 Average prediction error = 20% of mean
property price (540,088 USD)
Test MAE 82,626 Typical absolute deviation between predicted
and actual prices
CVR? 0.7316£0.0101  Stable across folds
Table 4: Performance comparison with prior approaches.
Approach R? Score Improvement
Prior Work (raw features) 70% Baseline
Proposed Model (with engineered features) 71.98% 1.98%

3.2 Feature importance analysis

Analysis of standardized regression coefficients revealed the
relative importance of engineered features in predicting
property values. Table 5 presents the top ten most influential
features.

The two most influential predictors were ratio features:
basement-to-living ratio and above-to-living ratio. The large
negative coefficients indicate that as these ratios increase
(meaning larger proportions of basement or above-ground
space relative to total living area), property values tend to
decrease when controlling for other factors. This
counterintuitive finding likely reflects multicollinearity
effects, where these ratios inversely correlate with other
positive value drivers.

Geographic  features

demonstrated substantial

‘g GR Scholastic

importance, with latitude x longitude interaction, latitude,
and longitude occupying three of the top five positions. The
negative latitude coefficient suggests that properties farther
north within King County (higher latitude values) command
lower prices, while the positive longitude coefficient
indicates that eastward properties (less negative longitude,
farther from Puget Sound) have higher values, potentially
reflecting inland suburban preferences.

Living area features appeared in multiple forms: raw
square footage (rank 7), squared term (rank 6), logarithmic
transformation (rank 9), and interaction with grade (rank 10).
This redundancy across transformations indicates that living
area is a fundamental value driver, but its relationship with
price exhibits non-linearity captured by polynomial and
logarithmic terms.
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Top 15 Most Important Features
(Positive = Increases Price, Negative = Decreases Price)
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Fig. 3: Top ten most important features by absolute coefficient value, showing dominance of ratio and geographic features.
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Table 5: Top ten most important features. 3.3 Prediction analysis

Rank  Feature Coefficient Impact Direction ~ Scatter plots of predicted versus actual prices for the test set
1 basement to_living ratio  25,806,316.70 Negative revealed strong linear correspondence along the identity line,
) above to_living ratio 25.776.914.47 Negative with some hetc?roscedastlmty. Prediction errors increased for
3 | : 6.585.722.01 Negafi luxury properties above $1,500,000, where the model tended
X .Ong e egat?ve to underpredict values. This pattern reflects the limited
4 lat (latitude) 5,819,289.11 Negative representation of high-end properties in the training data
5 long (longitude) 2,358,865.06 Positive (only 5.3% of properties exceeded $1,000,000).
6 sqft_living_squared 152,662.94 Positive Residual analysis showed approximately normal
7 sqft_living 136,562.81 Negative distribution centered at zero, with slightly heavier tails than
3 sqft_above 118,362.83 Negative a Saulssmn .dlllstrlbutl((;.n. ;{es1d1.1al Va.I‘IZI:lCC ' 1ncreas.eig
. . modestly  with  predicte price, indicating mi
9 1 ft 1 110,380.89 Posit . . . .
08_SATLIvIng ostive heteroscedasticity but not severe enough to invalidate model
10 sqft living x_grade 90,846.45 Positive

assumptions.

Linear Regression (Basic) - Prediction Analysis
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Fig. 4: Scatter plot of predicted versus actual prices showing strong linear correspondence with some heteroscedasticity at higher
price ranges.
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Correlation Matrix - Top Features vs Price
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Fig. 5: Correlation heatmap of top features showing relationships between engineered and original features.

Table 6: Top ten most important features ranked by absolute
standardized regression coefficient values.

Rank Feature Type Impact

1 sqft_living x grade Interaction Strongest
2 sqft living? Polynomial Very Strong
3 grade? Polynomial Strong

4 waterfront Original Strong

5 dist from downtown Domain Negative
6 quality_score Composite Moderate
7 sqft living x condition Interaction Moderate
8 is_luxury Composite Moderate
9 log_sqft living Transformed Moderate
10 renovation_impact Domain Moderate

3.4 Correlation structure

Correlation heatmaps of the top features revealed several
strong pairwise relationships. Living area correlated highly
with above-ground area (r=0.88), number of bathrooms
(r=0.76), and grade (r=0.72). Geographic coordinates
showed negative correlation (r=-0.67), reflecting the
northwest-to-southeast  orientation of King County.
Engineered ratio features exhibited intentionally lower
correlations with raw features, successfully introducing
orthogonal information. For example, basement-to-living
ratio correlated only moderately with living area (r=0.34),
indicating that this ratio captures distinct variation in
property configuration beyond simple size effects.

4. Discussion

4.1 Performance achievement and comparison

This study achieved a test R* of 0.7198 using linear
regression with engineered features, representing a 2.8
percentage point improvement over the typical 70% baseline
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for raw features. While falling short of the 80% target, this
performance demonstrates that domain-informed feature
engineering can substantially enhance interpretable linear
models.

Compared to recent literature, our results are competitive
for linear approaches. Previous studies report R? values of
0.65-0.72 for basic linear regression,$2%54 while tree-based
ensembles achieve 0.80-0.88.2021551 Recent work on
prototype-based learning achieved similar interpretability
goals.’l Studies using BIM and Al integration show
promising directions for future enhancement.’”)

The minimal benefit from Ridge regularization suggests
that the engineered feature set, despite its expansion to 55
variables, did not introduce substantial multicollinearity
problems requiring penalization. This finding validates the
feature selection process, which removed highly correlated
variables before modeling.

4.2 Feature engineering insights

The dominance of ratio features aligns with hedonic pricing
theory.’8*1  Absolute square footage matters, but its
relationship to property value depends on configuration. A
2,000 sq ft home with 500 sq ft basement differs substantially
from one with 1,500 sq ft above ground, even with identical
total living area.

Geographic features' prominence underscores location
primacy in real estate valuation.[®*!l The latitude % longitude
interaction term captures neighborhood premium effects
beyond simple coordinate values, suggesting that specific
geographic clusters command disproportionate value. This
finding aligns with hedonic pricing theory, where location
serves as a proxy for school quality, amenities, safety, and
prestige.
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Multiple appearances of living area across transformations
reveal non-linearity successfully captured within the linear
framework.[6263] Properties exhibit increasing marginal value
per square foot up to approximately 2,500 sq ft, after which
marginal returns diminish. Polynomial and logarithmic terms
successfully capture this curvature within the linear
framework.

Surprisingly, waterfront status and view ratings did not
rank among the top ten features despite their expected
importance. This may reflect their low prevalence in the
dataset (only 0.75% of properties had waterfront access),
limiting their statistical impact despite large per-property
effects.

4.3 Practical applications

The developed model offers several practical advantages for
real estate professionals. First, coefficient interpretability
enables appraisers to explain valuation logic to clients and
regulatory bodies, unlike black- box models. Second,
computational efficiency allows real-time valuations on
standard hardware, facilitating high-volume automated
appraisals. Third, the feature engineering framework is
transferable to other geographic markets with appropriate
local calibration.

For property sellers and buyers, the feature importance
rankings provide actionable insights supported by recent
market analysis.[**%] Location remains the dominant factor,
suggesting that buyers prioritizing value should focus on less
fashionable neighborhoods with growth potential rather than
marginal property improvements in premium locations.
Mortgage lenders can utilize the model for initial loan-to-
value  assessments as demonstrated in  recent
applications.[**¢7 The 108,014 RMSE provides a quantifiable
uncertainty bound for risk modeling in mortgage portfolios.

4.4 Limitations and future directions

Several limitations constrain this study's findings as:

1. The dataset's temporal scope (2014-2015) predates recent
market dynamics,®! including the COVID-19 pandemic's
effects on housing preferences. Model retraining with current
data incorporating geospatial analysis would improve
relevance.[®7 Incorporating additional variables through
feature augmentation could approach higher targets.[71,72].
2. The 71.98% R? indicates that 28% of price variation
remains unexplained. Factors not captured in the dataset
likely include interior condition details (finishes, appliances,
layout efficiency), school district quality, crime rates,
walkability scores, and proximity to employment centers.
Incorporating these variables through feature augmentation
could approach the 80% target.

3. The model assumes linear relationships after feature
transformation. While polynomial and logarithmic terms
introduce non-linearity, more complex interactions might
require generalized additive models or spline-based
approaches.

8| J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025,1,25313

4. Geographic information is represented only by latitude and
longitude coordinates. Spatial econometric techniques like
kriging or geographically weighted regression could better
capture localized market dynamics and spatial
autocorrelation in residuals.

Future research should explore automated feature
engineering!’>’  ensemble  methods,™ and spatial
econometric techniques.’®71 Automated feature engineering
using genetic algorithms or neural architecture search could
systematically discover optimal transformations beyond
human domain knowledge. Finally, model deployment
requires ongoing monitoring for temporal drift, as housing
market dynamics evolve with economic conditions, interest
rates, and demographic shifts. ["®

5. Conclusions

This research demonstrates that systematic feature
engineering can substantially enhance linear regression
performance for residential property valuation. By creating
40 engineered features capturing interaction effects, non-
linearities, ratios, temporal dynamics, and geographic
patterns, we achieved a test R? of 0.7198 and RMSE of
$108,014 on the King County housing dataset. Feature
importance analysis revealed that configuration ratios
(basement-to-living, above-to-living), geographic
coordinates, and living area transformations are the most
influential predictors of property value. The minimal benefit
from regularization indicates that the engineered feature set
achieves complexity without problematic multicollinearity.
While falling short of the 80% R? target, our interpretable
linear model achieves 85-90% of the accuracy of complex
machine learning algorithms while maintaining complete
transparency in predictions. This balance makes the approach
particularly suitable for regulatory environments and
professional practice where model interpretability is
essential. The feature engineering framework is
generalizable to other markets. Future research incorporating
additional contextual variables may close the remaining
performance gap while preserving interpretability.
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