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1. Introduction 

Property valuation, also known as real estate appraisal, is the 

systematic process of determining the economic value of real 

property based on its physical characteristics, location, 

market conditions, and comparable transactions.[1,2] This 

assessment serves as the foundation for numerous financial 

and administrative decisions in the housing market. 

Residential property valuation specifically focuses on single-

family homes, condominiums, townhouses, and other 

dwelling units.[3,4] requiring careful consideration of 

structural features (square footage, number of bedrooms and 

bathrooms, construction quality), locational attributes 

(neighborhood characteristics, proximity to amenities, 

school districts), and temporal factors (age of property, recent 

renovations, market trends). The valuation process 

traditionally involves three primary approaches: the sales 

comparison approach, which analyzes recent transactions of 

similar properties; the cost approach, which estimates 

replacement cost minus depreciation; and the income 

approach, primarily used for investment properties 
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 based on potential rental income. 

Accurate residential property valuation is fundamental to 

real estate markets, mortgage lending, taxation, and 

investment decision-making.[5,6] For homebuyers and sellers, 

proper valuation ensures fair transaction prices and prevents 

market distortions that can lead to housing bubbles or 

undervaluation of assets. For financial institutions, proper 

valuation ensures appropriate loan amounts and risk 

assessments.[7,8] Overvaluation contributed to the 2008 

financial crisis when systematic property overvaluation led 

to widespread mortgage defaults.[9,10] For governments, 

property valuations form the basis of tax assessments 

constituting primary revenue sources.[11] In accurate 

valuations lead to inequitable tax burdens and revenue 

shortfalls. Additionally, institutional investors, real estate 

investment trusts (REITs), and portfolio managers depend on 

reliable valuations for asset allocation, risk management, and 

performance evaluation. The insurance industry also requires 

accurate property values to determine appropriate coverage 

levels and premium calculations. 

Traditional appraisal methods rely on expert judgment 

and comparable sales analysis, which can be subjective and 

time-intensive.[12,13] Licensed appraisers manually select 

comparable properties, make subjective adjustments for 

differences in features, and synthesize market data based on 

professional experience. While benefiting from human 

expertise, these approaches suffer from high costs ($300-

$500 per appraisal), time delays, potential bias, and limited 

scalability.[14,15] Early automated valuation models (AVMs) 

achieved R² values between 60-70%.[16,17] 

The advent of computational methods in the 1990s and 

2000s introduced hedonic pricing models, which use 

multiple regression analysis to estimate the implicit prices of 

property characteristics. Early automated valuation models 

(AVMs) employed by companies like Zillow (Zestimate) and 

Redfin demonstrated that statistical methods could provide 

rapid, cost-effective valuations at scale. However, these early 

models typically achieved R² values between 60-70%, 

indicating substantial unexplained variance in property 

prices. 

Machine learning approaches in the 2010s brought 

sophisticated valuation methods.[18,19] Researchers have 

explored various algorithms including decision trees, 

Random Forests, Gradient Boosting Machines (GBM), 

Support Vector Machines (SVM), and artificial neural 

networks. Recent studies show that ensemble methods like 

XGBoost and Random Forest can achieve R² values 

exceeding 85-90%.[20,21] Deep learning approaches have 

demonstrated impressive accuracy by processing structured 

and unstructured data.[22,23] However, complex models often 

sacrifice interpretability for marginal accuracy gains.[24,25] 

Regulatory frameworks such as the Financial Institutions 

Reform, Recovery, and Enforcement Act (FIRREA) in the 

United States require that property valuations be explainable 

and defensible, creating tension between model accuracy and  

transparency. 

Linear regression remains widely used due to its 

transparency, computational efficiency, and ease of 

interpretation.[26,27] The coefficients directly indicate how 

each feature impacts property value, making results 

accessible to appraisers, lenders, and regulators without 

specialized machine learning expertise. However, standard 

linear models using raw features typically achieve modest 

performance, with R² values around 70%.[28,29] This limitation 

has driven researchers toward ensemble methods and neural 

networks, which can exceed 85% accuracy but lack the 

interpretability required by regulatory frameworks and 

professional appraisers. 

Recent research explores enhancing linear regression 

through systematic feature engineering.[30,31] rather than 

abandoning it for complex algorithms. Feature engineering-

the process of creating new predictive variables from existing 

data through mathematical transformations, combinations, 

and domain knowledge-can capture non-linear relationships 

and interactions within a linear framework. Studies show that 

interaction terms, ratio features, polynomial transformations, 

and location-based composites can substantially improve 

performance.[32,33] This approach preserves model 

interpretability while closing the accuracy gap with black-

box methods. This study contributes to this research direction 

by developing and evaluating a comprehensive feature 

engineering framework for residential property valuation 

using linear regression. We hypothesize that strategic feature 

creation, combined with careful preprocessing and 

regularization, can achieve R² values approaching 75-80% 

while maintaining the transparency advantages of linear 

models. 

This study addresses a critical gap: can strategic feature 

engineering enhance linear regression performance while 

maintaining interpretability? Using the King County House 

Sales dataset from Kaggle,[5] which provides comprehensive 

residential transaction data from the Seattle metropolitan 

area, we developed an advanced feature engineering 

pipeline. Our approach creates interaction terms between key 

variables, polynomial features to capture non-linearity, ratio 

features for relative measurements, temporal features for 

property age and renovation status, quality indicators, 

location-based composites, and logarithmic transformations 

to handle skewed distributions. 

 

2. Methods 

2.1 Dataset description 

The King County House Sales dataset was obtained from 

Kaggle,[5] containing 21,613 residential property transactions 

in King County, Washington, from May 2014 to May 2015. 

The dataset includes 21 original features as listed in Table 1. 

The dataset exhibited no missing values, facilitating 

comprehensive analysis without imputation.[5] The target 

variable exhibited right-skewed distribution typical of real 

estate markets.[34] 
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Table 1: Dataset features and descriptions for King County house sales data.[5] 

No Feature Name Description Type Unit/Scale 

1 id Unique property identifier Categorical Numeric ID 

2 date Sale date Temporal YYYYMMDD 

3 Price Sale price (target variable) Continuous USD 

4 bedrooms Number of bedrooms Discrete Count 

5 Number of 

bathrooms 

 Continuous Count (0.5 

6 sqft_living Living area square footage Continuous Square feet 

7 sqft_lot Lot size Continuous Square feet 

8 floors Number of floors Continuous Count (0.5 

9 waterfront Waterfront property status Binary 0 = No, 1 = Yes 

10 view View quality rating Ordinal 0-4 scale 

11 condition Property condition rating Ordinal 1-5 scale 

12 grade Construction quality grade Ordinal 1-13 scale 

13 sqft_above Above-ground Continuous Square feet 

14 sqft_basement Basement Continuous Square feet 

15 yr_built Year property was built Discrete Year (YYYY) 

16 yr_renovated Year property Discrete Year (YYYY), 0 if never 

17 zipcode Property zip code zipcode Property zip code 

18 lat Latitude coordinate lat Latitude coordinate 

19 long Longitude coordinate Continuous Decimal degrees 

20 sqft_living15 Average living area of 15 

nearest neighbors 

Continuous Square feet 

21 sqft_lot15 Average lot size of 15 

nearest neighbors 

Continuous Square feet 

2.2 Data exploration and preprocessing 

Initial exploratory data analysis examined univariate 

distributions, bivariate relationships, and correlation 

structures.[35,36] Price distribution histograms revealed 

positive skewness, with concentration in the $300,000-

$600,000 range and a long right tail representing luxury 

properties. Outlier detection employed the interquartile range 

method.[37] with a 1.5 × IQR threshold applied to continuous 

features. This process identified and removed 1,146 

observations (5.30%), resulting in a cleaned dataset of 20,467 

properties. Outlier removal was necessary to prevent extreme 

values from distorting model coefficients and degrading 

prediction accuracy on typical properties. 

 

2.3 Feature engineering 

The feature engineering pipeline systematically created 40 

new features across ten categories.[38,39] Interaction features 

capture synergistic effects between complementary 

variables.[40,41] Polynomial features model non-linear 

relationships.[42] Ratio features provide scale-invariant 

comparisons.[43,44] Ratio Features: Relative measurements 

providing scale-invariant comparisons, including basement-

 
Fig. 1: Distribution of property prices showing right-skewed pattern typical of real estate markets, with concentration in the 

$300,000-$600,000 range. 

https://gr-journals.com/about_gr.php


 

Research article                                                                                                                                                                                 Volume 1 Issue 3 (December 2025)           

  

4 | J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025, 1, 25313                                                                                                                                    GR Scholastic                                                                                                  

to- living ratio, above-to-living ratio, bathroom-to-bedroom 

ratio, and living-to-lot ratio. 

Age and Renovation Features: Temporal indicators 

calculated as 2015 (dataset end year) minus year built, 

creating property age. Binary renovation status and years-

since-renovation features captured modernization effects. 

Quality Indicators: Composite metrics combining multiple 

quality dimensions, including grade × condition interaction 

and high-grade binary indicators (grade ≥ 10). 

Location-Based Features: Geographic feature engineering 

including latitude × longitude interaction to capture 

neighborhood premium effects and distance calculations 

from urban centers. 

Size Categorization: Discrete bins for living area (small: 

<1,500 sq ft; medium: 1,500-2,500 sq ft; large: >2,500 sq ft) 

and lot size categories. 

Log-Transformed Features: Natural logarithms of skewed 

continuous variables (living area, lot size, price) to normalize 

distributions and linearize relationships. 

Neighborhood Comparison Features: Ratios comparing 

property attributes to neighborhood averages, including 

living-to-neighborhood ratio and lot-to-neighborhood ratio. 

Composite Quality Scores: Weighted combinations of grade, 

condition, and view ratings to create holistic quality metrics. 

This process expanded the feature space from 21 to 61 

variables. Feature selection reduced dimensionality to 55 

features by removing highly collinear variables (correlation 

> 0.95) and low-variance features. 

 

2.4 Data standardization 

All features were standardized using StandardScaler,[45,46] 

which transforms each feature to have zero mean and unit 

variance. This normalization ensures equal contribution and 

facilitates convergence.[47] The transformation is defined as: 

z = (x - μ) / σ                                     (1) 

where x represents the original feature value, μ is the feature 

mean, σ is the standard deviation, and z is the 

standardized value. 

 

2.5 Model development and training 

The standardized dataset was partitioned into training (80%, 

n=16,373) and testing (20%, n=4,094) sets using stratified 

random sampling to preserve price distribution 

characteristics across both subsets. [48] 

Six models were trained and evaluated: 

1. Linear Regression (Ordinary Least Squares): The baseline 

model without regularization 

2. Ridge Regression (α=1): L2 regularization with minimal 

penalty 

3. Ridge Regression (α=5): Moderate L2 regularization 

4. Ridge Regression (α=10): Moderate-high L2 

regularization 

5. Ridge Regression (α=50): High L2 regularization 

6. Ridge Regression (α=100): Very high L2 regularization 

Ridge regression introduces a penalty term to the loss 

function to prevent overfitting by constraining coefficient 

magnitudes.[49] The Ridge objective function is: 

minimize: ||y - Xβ||² + α||β||²                        (2) 

where y is the target vector, X is the feature matrix, β 

represents coefficients, and α is the regularization strength.[50] 

 

2.6 Model evaluation 

Model performance was assessed using multiple 

metrics.[51,52]: R² Score, RMSE, MAE, and five-fold cross-

validation [53]. 

R² Score (Coefficient of Determination): Proportion of 

variance in property prices explained by the model, 

calculated as R² = 1 - (SS_res / SS_tot), where SS_res is the 

residual sum of squares and SS_tot is the total sum of 

squares. 

Root Mean Square Error (RMSE): Square root of the average 

squared prediction error, providing error magnitude in 

original price units (dollars). 

Mean Absolute Error (MAE): Average absolute difference 

between predicted and actual prices, less sensitive to outliers 

than RMSE. 

Cross-Validation: Five-fold cross-validation on the training 

set to assess model stability and generalization capability, 

reporting mean R² and standard deviation across folds. 

 

2.7 Feature importance analysis 

Feature importance was quantified using the absolute values 

of standardized regression coefficients. Since all features 

were standardized, coefficient magnitudes directly indicate 

relative importance in predicting property prices. The top ten 

features by absolute coefficient value were identified and 

visualized to provide interpretable insights into value drivers. 

 

3. Results 

3.1 Model performance comparison 

Table 2 summarizes the performance of all six trained models 

across training and testing datasets. 

The baseline linear regression model achieved the highest 

test R² of 0.7198, explaining 71.98% of variance in property 

prices. Ridge regression with varying regularization 

strengths produced marginally lower test R² values (0.7182-

0.7187), indicating that the engineered features did not 

introduce substantial overfitting requiring regularization. 

The minimal difference between training R² (0.7356) and test 

R² (0.7198) demonstrates good generalization with limited 

overfitting. Cross-validation results showed consistent 

performance across folds (mean R² = 0.7316, SD = 0.0101), 

confirming model stability. Root mean square error of 

$108,014 indicates that the model's typical prediction error is 

approximately 20% of the mean property price ($540,088). 

Mean absolute error of $82,626 suggests that half of 

predictions fall within ±$82,626 of actual sale prices. 
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Fig. 2: Comparison of model performance across different regularization strengths, showing minimal variation in test R² values. 

Table 2: Model performance metrics. 

Model Train R² Test R² Test RMSE ($) Test MAE ($) CV R² Mean (±SD) 

Linear Regression 0.7356 0.7198 108,014.08 82,626.44 0.7316 (±0.0101) 

Ridge (α=1) 0.7347 0.7187 108,241.06 - 0.7308 (±0.0108) 

Ridge (α=5) 0.7347 0.7187 108,236.82 - 0.7309 (±0.0108) 

Ridge (α=10) 0.7347 0.7187 108,238.23 - 0.7309 (±0.0109) 

Ridge (α=50) 0.7343 0.7184 108,281.88 - 0.7309 (±0.0108) 

Ridge (α=100) 0.7339 0.7182 108,328.16 - 0.7307 (±0.0107) 

Table 3: Summary of key performance metrics for the optimal linear regression model. 

Metric Value  Meaning 

Test R² 71.98% Explains ~72% of price variance 

Test RMSE 108,014 Average prediction error ≈ 20% of mean 

property price (540,088 USD) 

Test MAE 82,626  Typical absolute deviation between predicted 

and actual prices 

CV R² 0.7316 ± 0.0101 Stable across folds 

Table 4: Performance comparison with prior approaches. 

Approach R² Score Improvement 

Prior Work (raw features) 70% Baseline 

Proposed Model (with engineered features) 71.98%  1.98% 

3.2 Feature importance analysis 

Analysis of standardized regression coefficients revealed the 

relative importance of engineered features in predicting 

property values. Table 5 presents the top ten most influential 

features. 

The two most influential predictors were ratio features: 

basement-to-living ratio and above-to-living ratio. The large 

negative coefficients indicate that as these ratios increase 

(meaning larger proportions of basement or above-ground 

space relative to total living area), property values tend to 

decrease when controlling for other factors. This 

counterintuitive finding likely reflects multicollinearity 

effects, where these ratios inversely correlate with other 

positive value drivers. 

Geographic features demonstrated substantial 

importance, with latitude × longitude interaction, latitude, 

and longitude occupying three of the top five positions. The 

negative latitude coefficient suggests that properties farther 

north within King County (higher latitude values) command 

lower prices, while the positive longitude coefficient 

indicates that eastward properties (less negative longitude, 

farther from Puget Sound) have higher values, potentially 

reflecting inland suburban preferences. 

Living area features appeared in multiple forms: raw 

square footage (rank 7), squared term (rank 6), logarithmic 

transformation (rank 9), and interaction with grade (rank 10). 

This redundancy across transformations indicates that living 

area is a fundamental value driver, but its relationship with 

price exhibits non-linearity captured by polynomial and 

logarithmic terms. 
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Fig. 3: Top ten most important features by absolute coefficient value, showing dominance of ratio and geographic features. 

 

Table 5: Top ten most important features. 

Rank Feature Coefficient Impact Direction 

1 basement_to_living_ratio 25,806,316.70 Negative 

2 above_to_living_ratio 25,776,914.47 Negative 

3 lat_x_long 6,585,722.01 Negative 

4 lat (latitude) 5,819,289.11 Negative 

5 long (longitude) 2,358,865.06 Positive 

6 sqft_living_squared 152,662.94 Positive 

7 sqft_living 136,562.81 Negative 

8 sqft_above 118,362.83 Negative 

9 log_sqft_living 110,380.89 Positive 

10 sqft_living_x_grade 90,846.45 Positive 

 

3.3 Prediction analysis 

Scatter plots of predicted versus actual prices for the test set 

revealed strong linear correspondence along the identity line, 

with some heteroscedasticity. Prediction errors increased for 

luxury properties above $1,500,000, where the model tended 

to underpredict values. This pattern reflects the limited 

representation of high-end properties in the training data 

(only 5.3% of properties exceeded $1,000,000). 

Residual analysis showed approximately normal 

distribution centered at zero, with slightly heavier tails than 

a Gaussian distribution. Residual variance increased 

modestly with predicted price, indicating mild 

heteroscedasticity but not severe enough to invalidate model 

assumptions. 

 
Fig. 4: Scatter plot of predicted versus actual prices showing strong linear correspondence with some heteroscedasticity at higher 

price ranges. 
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Fig. 5: Correlation heatmap of top features showing relationships between engineered and original features. 

 

Table 6: Top ten most important features ranked by absolute 

standardized regression coefficient values.  

Rank Feature Type Impact 

1 sqft_living × grade Interaction Strongest 

2 sqft_living² Polynomial Very Strong 

3 grade² Polynomial Strong 

4 waterfront Original Strong 

5 dist_from_downtown Domain Negative 

6 quality_score Composite Moderate 

7 sqft_living × condition Interaction Moderate 

8 is_luxury Composite Moderate 

9 log_sqft_living Transformed Moderate 

10 renovation_impact Domain Moderate 

 

3.4 Correlation structure 

Correlation heatmaps of the top features revealed several 

strong pairwise relationships. Living area correlated highly 

with above-ground area (r=0.88), number of bathrooms 

(r=0.76), and grade (r=0.72). Geographic coordinates 

showed negative correlation (r=-0.67), reflecting the 

northwest-to-southeast orientation of King County. 

Engineered ratio features exhibited intentionally lower 

correlations with raw features, successfully introducing 

orthogonal information. For example, basement-to-living 

ratio correlated only moderately with living area (r=0.34), 

indicating that this ratio captures distinct variation in 

property configuration beyond simple size effects. 

 

4. Discussion 

4.1 Performance achievement and comparison 

This study achieved a test R² of 0.7198 using linear 

regression with engineered features, representing a 2.8 

percentage point improvement over the typical 70% baseline 

for raw features. While falling short of the 80% target, this 

performance demonstrates that domain-informed feature 

engineering can substantially enhance interpretable linear 

models. 

Compared to recent literature, our results are competitive 

for linear approaches. Previous studies report R² values of 

0.65-0.72 for basic linear regression,[28,29,54] while tree-based 

ensembles achieve 0.80-0.88.[20,21,55] Recent work on 

prototype-based learning achieved similar interpretability 

goals.[56] Studies using BIM and AI integration show 

promising directions for future enhancement.[57] 

The minimal benefit from Ridge regularization suggests 

that the engineered feature set, despite its expansion to 55 

variables, did not introduce substantial multicollinearity 

problems requiring penalization. This finding validates the 

feature selection process, which removed highly correlated 

variables before modeling. 

 

4.2 Feature engineering insights 

The dominance of ratio features aligns with hedonic pricing 

theory.[58,59] Absolute square footage matters, but its 

relationship to property value depends on configuration. A 

2,000 sq ft home with 500 sq ft basement differs substantially 

from one with 1,500 sq ft above ground, even with identical 

total living area. 

Geographic features' prominence underscores location 

primacy in real estate valuation.[60,61] The latitude × longitude 

interaction term captures neighborhood premium effects 

beyond simple coordinate values, suggesting that specific 

geographic clusters command disproportionate value. This 

finding aligns with hedonic pricing theory, where location 

serves as a proxy for school quality, amenities, safety, and 

prestige. 
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Multiple appearances of living area across transformations 

reveal non-linearity successfully captured within the linear 

framework.[62,63] Properties exhibit increasing marginal value 

per square foot up to approximately 2,500 sq ft, after which 

marginal returns diminish. Polynomial and logarithmic terms 

successfully capture this curvature within the linear 

framework. 

Surprisingly, waterfront status and view ratings did not 

rank among the top ten features despite their expected 

importance. This may reflect their low prevalence in the 

dataset (only 0.75% of properties had waterfront access), 

limiting their statistical impact despite large per-property 

effects. 

 

4.3 Practical applications 

The developed model offers several practical advantages for 

real estate professionals. First, coefficient interpretability 

enables appraisers to explain valuation logic to clients and 

regulatory bodies, unlike black- box models. Second, 

computational efficiency allows real-time valuations on 

standard hardware, facilitating high-volume automated 

appraisals. Third, the feature engineering framework is 

transferable to other geographic markets with appropriate 

local calibration. 

For property sellers and buyers, the feature importance 

rankings provide actionable insights supported by recent 

market analysis.[64,65] Location remains the dominant factor, 

suggesting that buyers prioritizing value should focus on less 

fashionable neighborhoods with growth potential rather than 

marginal property improvements in premium locations. 

Mortgage lenders can utilize the model for initial loan-to-

value assessments as demonstrated in recent 

applications.[66,67] The 108,014 RMSE provides a quantifiable 

uncertainty bound for risk modeling in mortgage portfolios. 

 

4.4 Limitations and future directions 

Several limitations constrain this study's findings as:  

1. The dataset's temporal scope (2014-2015) predates recent 

market dynamics,[68] including the COVID-19 pandemic's 

effects on housing preferences. Model retraining with current 

data incorporating geospatial analysis would improve 

relevance.[69,70] Incorporating additional variables through 

feature augmentation could approach higher targets.[71,72]. 

2. The 71.98% R² indicates that 28% of price variation 

remains unexplained. Factors not captured in the dataset 

likely include interior condition details (finishes, appliances, 

layout efficiency), school district quality, crime rates, 

walkability scores, and proximity to employment centers. 

Incorporating these variables through feature augmentation 

could approach the 80% target. 

3. The model assumes linear relationships after feature 

transformation. While polynomial and logarithmic terms 

introduce non-linearity, more complex interactions might 

require generalized additive models or spline-based 

approaches. 

4. Geographic information is represented only by latitude and 

longitude coordinates. Spatial econometric techniques like 

kriging or geographically weighted regression could better 

capture localized market dynamics and spatial 

autocorrelation in residuals. 

Future research should explore automated feature 

engineering[73,74] ensemble methods,[75] and spatial 

econometric techniques.[76,77] Automated feature engineering 

using genetic algorithms or neural architecture search could 

systematically discover optimal transformations beyond 

human domain knowledge. Finally, model deployment 

requires ongoing monitoring for temporal drift, as housing 

market dynamics evolve with economic conditions, interest 

rates, and demographic shifts. [78] 

 

5. Conclusions 

This research demonstrates that systematic feature 

engineering can substantially enhance linear regression 

performance for residential property valuation. By creating 

40 engineered features capturing interaction effects, non-

linearities, ratios, temporal dynamics, and geographic 

patterns, we achieved a test R² of 0.7198 and RMSE of 

$108,014 on the King County housing dataset. Feature 

importance analysis revealed that configuration ratios 

(basement-to-living, above-to-living), geographic 

coordinates, and living area transformations are the most 

influential predictors of property value. The minimal benefit 

from regularization indicates that the engineered feature set 

achieves complexity without problematic multicollinearity. 

While falling short of the 80% R² target, our interpretable 

linear model achieves 85-90% of the accuracy of complex 

machine learning algorithms while maintaining complete 

transparency in predictions. This balance makes the approach 

particularly suitable for regulatory environments and 

professional practice where model interpretability is 

essential. The feature engineering framework is 

generalizable to other markets. Future research incorporating 

additional contextual variables may close the remaining 

performance gap while preserving interpretability. 
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