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1. Introduction 

The high rate of networked devices has contributed 

significantly to the occurrence of network-related threats.[1,2] 

The Internet of Things (IoT), cloud computing, edge 

networking, and 5G represent emerging technologies 

providing a wide range of diverse, complex, and pervasive 

cyber threats.[3-6] Fare-old firewalls and antivirus software 

have become sufficiently ineffective in their deal with cyber  
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aggressors that are highly dynamic. The intrusion detection 

system has therefore become an essential element in modern-

day cybersecurity models and an additional layer of defense 

that operates in real-time to identify the malicious activity, 

abnormal behavior and unauthorized access requests.[7,8] 

 

1.1 Evolution of intrusion detection systems 

The concept of IDS originated in the early 1980s. In 1980, 

James P. Anderson laid the basic framework when he 

advocated that appropriate analysis of audit logs could detect 

computer misuse.[1] A couple of years later, in 1987, Dorothy 

Denning developed the concept further and presented the 

first practical model of IDS.[2] Her approach involved real-

time detection of anomalous activities of the system using 

statistical profiles of normal behavior. During the 2000s, 

unprecedented growth in network traffic coupled with 

growth in computing power presented excellent conditions to 

effectively implement machine learning algorithms to 

improve IDS capabilities. Numerous algorithms, such as 

decision trees, support vector machines (SVM), k-nearest 

neighbors (k-NN), and random forests, were proposed or 

employed to intelligently learn attack patterns not premised 

in knowledge databases.[3,6] While successful, these were still 

rather dependent on handcrafted features and fixed datasets, 

and therefore their adaptability to rapidly evolving network 

environments remained limited.[3] 

During the period starting from 2010 until 2020, intrusion 

detection system research has undergone important 

developments due to the introduction of deep learning 

techniques. Contrasting with other conventional machine 

learning methods, deep learning allowed IDS to learn 

directly from raw network traffic with architectures such as 

CNNs, RNNs, or autoencoders, and brought significant 

improvement in the accuracy of the detection results.[7,8] 

Within this period, some benchmark datasets such as NSL-

KDD, UNSW-NB15, and CIC-IDS2017 have seen wider 

adoptions. As a result of these adoptions, a standardized 

evaluation platform was possible to compare different 

approaches fairly and reproducibly for IDS research 

studies.[3,7] 

These developments have set the scene for the modern 

IDS landscape, which has progressively focused on four 

main research axes, namely federated learning for privacy-

preserving and collaborative model training, adversarial 

robustness against evasion and poisoning attacks, 

lightweight IDS models for IoT and edge computing 

environments, and explainable AI for enhancing 

transparency and trustworthiness in detection decisions.[4-

6,9,10-16] All these together signal a very clear trend from rule-

based and shallow learning–based towards intelligent, 

adaptive, and resilient IDS systems that will be necessary to 

cope with the challenges of modern network environments. 

Fig. 1 illustrates the evolution of key trends in network 

security. 

 

1.2 Need for a comprehensive survey 

In the last years, considerable attention has been given to the 

improvement of Intrusion Detection System performance 

using advanced technologies such as deep learning, federated 

learning, adversarial defense mechanisms, and model 

optimization techniques for efficiency and explainability 

enhancements with XAI.[10-13] While various survey works 

have discussed different aspects of IDS, from machine 

learning–based detection to IoT-oriented IDS and up to 

adversarial robustness, most of them focus on specific 

isolated dimensions of the problem instead of providing an 

integrated overview.[3,6] 

Furthermore, the rapid development of data-driven 

security solutions, coupled with the heterogeneity of network 

environments and application domains, has resulted in the 

fragmentation of IDS research into narrowly focused, 

disconnected subfields.[4,9] Such fragmentation inhibits the 

capability of new researchers and practitioners to establish a 

comprehensive understanding of the historical development

 
Fig. 1: Evolution of key trends in network security. 
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of intrusion detection systems and interrelationships among 

diverse detection methodologies.[1,2] There is therefore an 

pressing need for a comprehensive, well-structured review 

that synthesizes recent advances, provides a clear taxonomy 

of IDS research directions, and identifies critical research 

gaps and future opportunities within the IDS domain.[5,7,8] 

 

1.3 Objectives and contributions 

This work presents a concise and comprehensive review of 

the current developments on intrusion detection, particularly 

the current trend of rendering IDS solutions intelligent, 

flexible, and reliable. The key objectives guiding this work 

are as follows: 

1. Tracing the evolution of IDS techniques: from traditional 

machine learning to modern deep learning-based state of the 

art approaches that now include federated learning, 

adversarially robust IDS, lightweight models, and 

explainable AI methods. 

2. A thematic classification framework that classifies the 

existing IDS approaches based on design principles, learning 

methodologies, and deployment contexts. 

3. The evaluation of dataset diversity, performance metrics, 

and standards employed in recent IDS research  

4. Comparing the considered IDS models in terms of cyber 

threats detection accuracy, computational resource 

utilization, interpretability of results, and scalability. 

5. Discussion of the challenges faced, identification of key 

issues needing further research, and directions for future 

development pointing toward reliability, privacy, and 

adaptability in IDS development within complex network 

configurations. 

 

2. Background and fundamentals 

IDS are security mechanisms designed and engineered to 

identify unauthorized access, adversary behaviors, and 

anomalous activities within host-based and network-based 

systems.[1,2] A detailed analysis of the evolution and likely 

future trends of IDS calls for a necessary account of their 

categorization, detection paradigms, challenges they cannot 

avoid, and methodologies put forward for their 

evaluations.[3,6] Therefore, this section outlines the core 

concepts of IDS, identified from high-impact recent research 

that lays a concrete basis for further discussion.[7,8] 

 

2.1 IDS types and architectures 

IDS are classified according to deployment point and 

architecture: 

 

2.1.1 DS types and architectures 

Broadly, IDSs can be classified based on their scope of 

monitoring and operational modality.[1,2] Network-based 

IDSs monitor network traffic against known attack 

signatures, anomalies, or suspicious patterns by inspecting 

data flows, packets, and protocols of communications.[3] In 

turn, host-based IDSs monitor system calls, active processes, 

log files, and file integrity at the level of single hosts to 

identify malicious activities or unauthorized modifications.[4] 

Hybrid architecture has also been developed to improve 

detection accuracy and provide comprehensive protection.[5] 

In such systems, network-level monitoring is combined with 

host-level analytics, allowing for simultaneous visibility 

across both domains. The network-wide view that a network-

based IDS provides, coupled with the fine-grained details of 

host behavior delivered by a host-based IDS, combines both 

for better coverage and efficient detection in a hybrid 

solution.[6] 

 

2.1.2 Centralized vs. distributed or federated IDS  

Traditional IDSs rely mainly on a centralized architecture, 

where the security logs and network traffic collected from 

various data sources are forwarded to a central server for 

analysis.[1,2] While such architectures are easier to manage 

and can find large-scale attacks, they suffer from several 

known shortcomings: privacy risks due to the sharing of 

sensitive data, higher communication overhead, and the 

presence of single points of failure.[3] In this respect, the 

following have been some of the motivations for recent work 

on improving next-generation IDSs by leveraging FL.[4,5] 

In such a paradigm, several devices or entities jointly 

train a shared global model without directly sharing raw data 

with each other to maintain the confidentiality of the data, 

while residual detection performance can still be 

preserved.[6,9] So far, the proposed federated learning-based 

IDS frameworks are successfully applied in various 

environments, such as IoT systems, vehicular networks, and 

edge computing infrastructures, which enhances scalability, 

robustness, and adaptability to secure against dynamic cyber-

attacks.[7,14] 

 

2.1.3 Lightweight and edge-oriented IDS 

The limitations of limited computational resources, limited 

memory capability, and a limited energy supply in Internet-

of-Things (IoT) and unmanned aerial vehicle (UAV) system 

add to the problem of implementing intrusion detection 

system (IDS). IDSs that will be deployed at such low-power 

systems shall be lightweight, performance-efficient, 

responsive, and consequently, place very little processing 

load besides still retaining the capability to detect in real-time 

and appropriately sustaining system performance at 

insignificant levels.[5,6] To address these drawbacks, previous 

studies explored methods of knowledge distillation, model 

pruning, and compression to downsize models and make 

them less complex without affecting their detection 

accuracy.[7,9] These lightweight IDS frameworks have been 

empirically proven to be operationally deployable on 

resource-limited devices hence offering prompt and 

successful defense in dynamic and real-time network 

settings.[7,10] 

 

2.2 Detection paradigms 
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The three main concepts on which the functionality of IDS is 

founded include: 

 

2.2.1 Signature‑based detection 

Detection of attacks is considered known by the 

implementation of predefined signatures. This will work with 

the threats that has been recognized before but unable to 

notice zero day exploits.[1] 

 

2.2.2 Anomaly‑based detection 

Understanding typical system and network behavior and then 

indicating any variations as possible security events. 

Although it can detect unknown attacks, it is likely to have 

high false-positive rates.[3,11] 

 

2.2.3 Hybrid detection 

Integration of signature- based and anomaly- based 

approaches to supplement the overall performance. Models 

like autoencoders built into feature-based classifiers are 

hybrid machine-learning/deep-learning models which can 

enhance detection accuracy even in scenarios where there is 

only limited labeled data.[10,11] 

 

2.3 Challenges of critical IDS design. 

There are other contemporary issues that are brought forward 

in the current research: 

 

2.3.1 Between data balance and high dimensionality. 

Sparse attack classes are common in the IDS datasets. 

Autoencoder-based data augmentation techniques or 

attention-based feature selection are also effective to address 

the problem of class imbalance.[3,8] 

 

2.3.2 Resource constraints 

The IoT and edge call on computationally lightweight 

models. Compact architectures, knowledge distillation, and 

pruning also make it possible to deploy in real-time and use 

less energy.[7,9] 

 

2.3.3 Privacy and federated learning. 

Sharing of raw network data is limited by issues of privacy. 

Federated learning IDS allows the model to train 

collaboratively without revealing sensitive data, and Non-

IID data distribution is covered by personalized FL 

methods.[4,5,12] 

 

2.3.4 Adversarial robustness 

ML or DL -based IDS have been susceptible to evasion and 

poisoning attacks. Strong autoencoders, ensemble learning, 

and adversarial training methods increase the resilience of 

the system.[2,11-14] 

 

2.3.5 Explainability and trust 

Explainable AI, such as SHAP and LIME, are more 

interpretable, which leads to better operator trust in 

automated decision-making.[8,10] 

 

2.4 Evaluation methods 

2.4.1 Datasets 

Most intrusion detection studies use the benchmark datasets 

include CIC2017, NSLKDD, and various IoT-based traffic 

libraries. The collections have manually labeled network 

traces with a variety of attack modalities, which enable 

reproducible networks, thereby allowing fair comparison of 

studies as has been reported in [1,4,6]. Other than those 

general purposes, domain-specific data collections have been 

increasingly employed to capture the distinctive 

characteristics of particular environments, such as vehicular 

network traffic, unmanned aerial vehicle (UAV) telemetry, 

system logs, or even encrypted IoT protocol data. Their 

training on such real-world data makes them remain relevant 

to the related deployment environments, which is 

demonstrated in [5,8,9]. 

 

2.4.2 Detection metrics 

It is evident that accuracy, precision, recall, F1 -score, and 

false positive rate are the conventional parameters used to 

evaluate the performance of intrusion detection systems, as 

was reported in [3,6]. The statistics give the quantification of 

how well a model detects malicious activities and how much 

unnecessary alarms are reduced. Additional measurements 

like inference latency, memory footprint and energy 

spending are of crucial interest in application areas where 

real-time processing is needed or restricted computing 

capabilities.[7,9] These metrics have to be incorporated so that 

lightweight IDS architectures are operationally efficient and 

do not strain the available hardware too hard. 

 

2.4.2 Benchmarking and reproducibility 

Transparency in reporting experimental conditions, 

including partitioning information about datasets, 

preprocessing methodologies and hyperparameter settings, 

enhances rigorous benchmarking by facilitating 

reproducibility and comparability across multiple research 

studies.[1,4,12] Such recent survey research also considers 

adversarial scenarios and resource-limited deployments, 

comparing models against advanced attack techniques and 

system constraints. Such work strengthens the reliability, 

dependability, and practicality of intrusion detection systems 

documented in [2] and [12]. 

Today, intrusion detection systems go beyond classical 

signature- and anomaly-based paradigms to include deep 

learning, federated learning, lightweight architectures, 

adversarial robustness, and explainability. This development 

has brought about important challenges in class imbalance, 

computational constraints, privacy protection, adversarial 

examples, and interpretability of decision-making processes. 

These general issues present the context for the taxonomy 

and comparative analysis discussed throughout the rest of 

this paper.  
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Fig. 2: Timeline of IDS Trends (2021–2025). 

 

3. Evolution of IDS technologies 

The increasing sophistication of cyberattacks, fast 

deployment of IoT and edge devices, and integration of 

machine learning and artificial intelligence techniques all 

together have driven the development of IDSs in the recent 

years.[3,4,6,9] The current IDS research has evolved along 

several interrelated paths encompassing deep learning, 

federated learning, adversarial robustness, lightweight model 

design, and explainable AI. The following section provides 

in-depth analysis of these paths and a timeline highlighting 

the chronological evolution of IDS technologies.[1,5,7,8] 

 

3.1 Timeline of IDS evolution 

The Fig. 2 shows briefed timeline of IDS evolution. This 

roadmap traces the evolution of intrusion detection systems 

from traditional machine learning methods to contemporary 

decentralized and interpretable paradigms. 

2021–2022: Traditional ML-based IDS, dominated by 

methods such as Random Forest, Support Vector Machines, 

and shallow neural networks for anomaly detection.[1,3] 

2023: Deep learning frameworks such as Convolutional 

Neural Networks, Long Short-Term Memory networks, and 

autoencoders are used to learn complex network behaviors 

and detect new types of attacks.[3,6,10] 

2023–2024: The rise of federated learning–based IDS 

enables the training of models collaboratively, not requiring 

the sharing of raw data, especially relevant for IoT and 

vehicular networks.[4,5,12,14] 

2024: Lightweight IDS suitable for resource-constrained 

environments; pruning, knowledge distillation, and strategies 

relating to its edge deployment.[7,8,9] 

2024-2025: Further focus on adversarial robustness, 

integration of explainable AI, to improve resilience to 

evasive attacks, and enhance interpretability for operators, 

thus.[2,11,13,15,16] 

Cumulatively, this trend shows the continuing transition from 

centralized, traditional ML systems to decentralized, robust, 

and explainable architectures that fit the modern requisites of 

networked settings. 

3.2 Deep learning-based IDS 

The deep learning methodologies have significantly 

enhanced the efficiency and versatility of intrusion detection 

systems. Autoencoders, CNNs, LSTMs, and hybrid ML/DL 

algorithms can model complex nonlinear patterns within 

network flows for efficient identification.[3,6,7,10] 

Key Contributions: 

1. RAIDS: A robust autoencoder-based IDS, which leverages 

limited labeled data to boost the detection performance even 

in hostile environments.[5,15] 

2. Hybrid ML/DL models: These architectures combine 

feature selection with deep networks to obtain higher 

performance in anomaly detection in the network.[10,12] 

3. Feature learning from raw inputs using deep models 

reduces dependency on hand-crafted features, thus 

enhancing the system's capability to detect unseen 

attacks.[3,6,10,16] 

 

3.3 Federated learning-based IDS 

In the last few years, FL has emerged as a methodology for 

addressing privacy concerns and data silos in distributed IoT 

and vehicular networks. The IDS based on FL allows 

collaborative model training without transmitting raw traffic 

logs, as shown in [4,5,12,14]. Applications involve intrusion 

detection in IoT environments and the detection of DDoS 

attacks while Non-IID data distributions are handled 

efficiently with reduced communication overhead, as 

discussed in [5,12,14]. FL has also been combined with deep 

learning in hybrid federated architectures for fault detection 

while ensuring data privacy, as discussed in [4,6,12]. In 

summary, FL is a significant step forward toward the 

realization of distributed, privacy-preserving, and scalable 

IDS architectures, as also shown in [4,5,12,14]. 

 

3.4 Adversarial Robust IDS 

Adversarial robustness is a major concern for machine 

learning and deep learning-based IDS, which are continually 

confronted by evasion and poisoning attacks. Various recent 

works emphasize robust, autoencoder-based IDS approaches 
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to detect manipulated traffic patterns.[2,3,5,15] Research on 

adversarial attacks on vehicular networks and IoT IDS 

provides beneficial insights into the development of robust 

models.[2,11,13] Further, adversary sample generation 

methodologies are discussed for various techniques, such as 

image augmentation, filtering, and patching, while practical 

implications are considered in different case studies, for 

example, disease prediction using a prototype chest X-ray 

imaging system.[13-14,16] The shift toward adversarial 

robustness supports the performance of IDS, which remains 

effective under sophisticated and intelligent attack 

scenarios.[2-3,5,15] 

 

3.5 Lightweight IDS for resource-constrained 

environments 

With the proliferation of IoT, unmanned aerial systems, and 

edge computing infrastructures, there is an emerging demand 

for lightweight IDS solutions that would be easily 

embeddable into resource-constrained devices. Knowledge 

distillation and model pruning are common methods to 

reduce computational and memory burdens with minimal 

degradation in detection performance.[7,9] Adopting 

lightweight architectures allows for real-time threat 

detection, which can be easily deployed on devices 

characterized by poor CPU power, memory, or energy 

supply.[7,10] If combined, these techniques enable scalable and 

energy-efficient IDS deployment in heterogeneous 

networked environments.[1,7,9,10] 

 

3.6 Explainable AI in IDS 

Explainable AI addresses the opaque nature of deep 

learning–based intrusion detection systems. Feature 

selection methods combined with interpretability techniques 

like SHAP and LIME provide more understandable 

explanations of system decisions to network operators. 

Integration of XAI has been decisive in pushing the 

deployment of IDSs in real-world scenarios due to its 

capacity to help analysts understand why certain instances of 

traffic are classified as malicious. XAI is of particular 

importance when deep learning and federated learning-based 

IDS are used in safety critical infrastructures. Finally, the 

evolution of IDS can be summarized into five important and 

somewhat overlapping trends.[2-16] 

Fig. 3 illustrates the projected development of key 

research trends in IDS from 2021 to 2025. The plot of relative 

importance over time reflects the increasing focus of 

researchers on various IDS approaches. Deep learning and 

hybrid approach also stay important, rising from about 40 in 

2021 to over 85 in 2025. This trend indicates the increased 

reliance of IDS on end-to-end learning for complex and high-

dimensional network traffic problems.[3-7, 10,12,16] Federated or 

privacy-preserving learning also shows a progressive climb 

from around 20 in 2021 to roughly 80 in 2025, corresponding 

to the growing interest in decentralized IDS with sensitive 

data protection.[4,5,12,14] Adversarial robustness also 

continuously rises and reaches about 65 by 2025, indicating 

an improvement in the robustness of IDSs in resisting 

evasion and poisoning attacks.[2,5,11,13-15] Lightweight or IoT-

focused solutions have a remarkable surge between 2023 and 

2024, driven by growing interests in computationally 

efficient IDS targeting resource-constrained devices, such as 

IoT or UAV systems.[1,7,9,10] Explainability or XAI starts low, 

speeding up and almost catching up with other trends in 

2025, reflecting the recent importance of interpretability and 

operator trust of real-world deployments.[8,10,11,16] 

These trends are further supported by key references 

summarized in Table 1, which links each research direction 

with representative studies and notable works. For instance, 

Deep Learning is explored in [3-7,10,12,16], whereas 

federated learning approaches can be found in [4,5,12,14]. 

 
Fig. 3: IDS Trends (2021–2025). 
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Table 1: Summary of trends in IDS. 

Trend Description Ref.  

Deep Learning (DL) End-to-end feature learning for complex traffic patterns [3-7,10,12,16] 

Federated Learning (FL) Privacy-preserving distributed model training [4,5,12,14] 

Adversarial Robustness Resilient IDS against evasion and poisoning attacks [2,3,5,11,13-15] 

Lightweight Efficient architectures for IoT, UAV, edge devices [1,7,9,10] 

Explainable AI (XAI) Model interpretability and trust for operators [8,10,11,16] 

These trends show a progressive convergence toward 

distributed, interpretable, efficient, and robust IDS 

architectures suitable for next generation networks. 

 

4. Thematic taxonomy and comparative analysis 

4.1 Overview of thematic taxonomy 

This section consolidates the diverging directions of recent 

IDS research by presenting a thematic taxonomy that 

organizes the significant contributions of 2021–2025 into 

five interconnected themes, including Deep Learning, 

Federated Learning, Adversarial Robust IDS, Lightweight 

IDS, and Explainable Artificial Intelligence-based IDS.[1-16] 

Fig. 4 depicts the taxonomy regarding paradigm overlap and 

development. DL acts as the base that empowers feature 

learning with anomaly detection capabilities.[3,6,7,10,12,16] FL 

extends DL to distributed and privacy-preserving 

environments.[4,5,12,14] Adversarial robustness offers immunity 

to model tampering,[2,3,5,11,13-15] and lightweight design 

emphasizes deployment efficiency in IoT and edge 

networks.[1,9, 7,10] XAI layers interpretability and trust atop the 

other layers.[8,10,11,16] 

The taxonomy is composed of several integrated strata. 

At the core, the first layer consists of deep learning 

techniques, [3,6,7,10,12,16] these are the basic methods for 

intrusion detection. On top of that, the second layer outlines 

Federated Learning extensions[4,5,12,14] as an enabling factor 

for collaborative and privacy-preserving model training. The 

third one includes Adversarial Robust Intrusion Detection 

Systems frameworks,[2,3,5,11,13,15] developed to improve the 

resilience of systems against sophisticated adversarial 

intrusions. The outer layer targets Lightweight IDS 

optimization.[1,7,9,10] to achieve efficiency and scalability 

during the deployment phase. Throughout all layers, a 

transversal overlay indicates XAI-based 

interpretability,[8,10,11,16] bringing transparency into the whole 

system. Arrows between layers represent integration 

patterns, such as the integration of Federated and Adversarial 

approaches, and the integration of Lightweight and XAI 

models. It shows the increasing interest in hybrid, robust, and 

interpretable IDS architectures. Deep Learning 

methodologies[3,6,7,10,12,16] would be clearly shown in the 

central layer. 

 

4.2 Deep learning-centric IDS 

Deep learning drives modern improvements in intrusion 

detection systems. Recent works such as Sarıkaya et al.[3,5] 

propose a powerful autoencoder framework, RAIDS, which 

offers improved anomaly detection with minimum 

supervision. Farhan et al.[8] shows that the CNN-LSTM 

hybrid architecture yields better detection accuracy on state-

of-the-art datasets like CIC-IDS2017 and UNSW-NB15. 

Similarly, Sajid et al.[12] combine deep learning with feature-

selection-based machine learning to enhance the detection of 

complex cloud-based intrusions. Collectively, these 

investigations show that deep-learning driven IDS has strong 

generalization capabilities. However, it suffers from 

challenges in explainability and computational cost. Such 

limitations give a directional shift toward federated learning, 

lightweight model design, and the integration of explainable 

AI approaches.[4,7,8,10,11,16] 

 
Fig. 4: Thematic Taxonomy of IDS Evolution (2021–2025). 
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4.3 Federated Learning for Collaborative IDS  

It provides a feasible solution for intrusion detection systems 

in terms of data decentralization and privacy issues. 

Specifically, Hernandez-Ramos et al.[6] and Buyuktanir et 

al.[7] have developed frameworks that enable distributed 

nodes to collaboratively train a global detection model 

without necessarily sharing any sensitive data. Devine et 

al.[14] has extended this paradigm towards IoT-based DDoS 

detection by aggregating local gradients while preserving 

user privacy. These studies also demonstrate how federated 

learning can improve scalability and privacy, but also 

attendant challenges such as non-IID data distribution and 

potential model drift among participating nodes. When 

combined with deep learning backbones, federated learning-

based IDSs guarantee better adaptability across 

heterogeneous network environments.[3,4,5,6,12,14] 

 

4.4 Adversarial robust IDS 

In this context, the adversarial research stream analyzes the 

poisoning and evasion attacks of ML/DL-based IDS. Ennaji 

et al. [4] performed an in-depth review of adversarial attacks 

on IDS. The review focused more on vulnerabilities due to 

feature-space manipulation. Sarıkaya et al.[5] proposed the 

use of adversarial autoencoders as a method to enhance 

robustness. Aloraini et al.[13] analyzed adversarial examples 

for in-vehicle networks. These works emphasize the need to 

develop defense mechanisms, including gradient masking 

and adversarial retraining, as well as hybrid intrusion 

detection strategies using statistical methodology together 

with deep learning models. Most recently, adversarial 

robustness has also been identified as an important metric to 

consider during the performance evaluation of intrusion 

detection, in addition to the accuracy metric.[2,3,5,11,13-15] 

 

4.5 Lightweight IDS for IoT and edge systems 

Low-latency and small-footprint IDS models are needed in 

resource-limited settings. Wang et al.[8] designed a 

knowledge-distillation-based IoT IDS that reduces large DL 

models while maintaining high accuracy. Murthy[10] created 

lightweight embedded and edge device frameworks through 

model pruning and quantization. These strategies support on-

device threat detection for IoT sensors, drones, and edge 

routers. Yet they tend to compromise explainability and 

robustness, driving the integration of XAI and adversarial 

defense into lightweight pipelines. 

 

4.6 Explainable and interpretable IDS 

Explainability has become a critical dimension for the 

deployment of operational IDS. Chen et al.[11] presented an 

explainable feature selection model for encrypted traffic IDS 

based on SHAP interpretations, whereas Sajid et al.[12] 

focused on hybrid ML DL architectures with interpretable 

decisions. XAI augments human confidence, debugging, and 

compliance with security standards. Combined with 

federated learning and lightweight designs, XAI provides a 

path to intrusion detection that is auditable and transparent 

essential in regulated and mission-critical systems.[4,8-12,16] 

 

4.7 Comparative analysis of trends 

This comparative analysis exhibits a convergence trend: next 

generation IDS are more federated, explainable, and 

lightweight, yet resilient to adversarial manipulation. 

The thematic taxonomy demonstrates that IDS evolution 

from 2021–2025 is not linear but layered and integrative. 

Emerging systems combine the power of DL with the 

decentralization of FL, the efficiency of lightweight models, 

the security of adversarial defense, and the transparency of 

XAI. Future IDS frameworks are expected to blend these 

paradigms into adaptive, trustworthy, and resource-aware 

architecture for large-scale, heterogeneous networks. 

 

5. Datasets, evaluation metrics, and benchmarking 

practices 

The performance of IDS is highly dependent on the quality 

of the datasets, suitability of the metrics used for evaluation, 

and sound benchmarking practices. Further, this chapter 

provides an in-depth review of the modern resources and 

techniques being used in IDS research, with a focus on works 

published between 2021 and 2025.[1-16] 

 

5.1 Benchmark datasets for IDS research 

Current IDS research uses both traditional and domain-

oriented datasets to assess detection performance: 

1. CIC-IDS2017 and CIC-IDS2018: These datasets provide 

real-world network traffic with labelled attack scenarios 

for DoS, DDoS, infiltration, brute-force, and web attacks. 

They are among the most commonly used datasets in DL-

based IDS research today.[6,7,10,12] 

Table 2: Advantages & disadvantages of trends in IDS. 

Trend Key Advantages Challenges / Gaps References  

Deep Learning (DL) High detection accuracy, automated 

feature learning 

Computational cost, lack of 

interpretability 

[3,6,7,10,12,16] 

Federated Learning (FL) Privacy-preserving distributed IDS Non-IID data, communication 

overhead 

[4,5,12,14] 

Adversarial Robustness Resilience to evasion attacks Limited real-world validation [2,3,5,11,13-15] 

Lightweight IDS Efficient on constrained devices Trade-off with accuracy and 

robustness 

[1,7,9,10] 

Explainable AI (XAI) Transparency, trust, decision 

traceability 

Integration with DL/FL 

frameworks 

[9-11,16] 
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2. UNSW-NB15: This dataset contains a combination of 

normal and malicious network flows with 49 features, 

suitable for both ML- and DL-based IDS 

experiments.[3,6,10] 

3. IoT-Specific Datasets: Lightweight and federated IDS 

studies utilize IoT traffic datasets, such as UNSW-NB15-

derived IoT traces and IoTID20, to evaluate edge 

deployment and resource-limited detection.[7,9,12] 

4. Vehicular and Cyber-Physical Network Datasets: In-

vehicle network attack datasets (CAN bus datasets) 

enable adversarial robustness studies in autonomous 

systems.[11,13,14] 

5. Custom or Hybrid Datasets: Various studies,[3,10,12,15,16] 

generate artificial or hybrid datasets by combining 

multiple sources to emulate heterogeneous, non-IID 

traffic for federated or adversarial testing. 

Observations: While these datasets exist, researchers 

highlight issues such as data imbalance, limited attack 

variety, and lack of standardization, making cross-study 

comparisons challenging. 

 

5.2 Evaluation metrics 

IDS evaluation uses measures that express detection 

accuracy, reliability, and robustness. Common measures are: 

1. Accuracy (ACC): The ratio of correctly classified 

instances to all instances. 

2. Precision, Recall, F1 Score: Valuable for imbalanced 

datasets; the F1-score balances false positives and false 

negatives.[1,3,6,10] 

3. True Positive Rate (TPR) Detection Rate: The ratio of 

correctly detected attacks. 

4. False Positive Rate (FPR): The ratio of benign traffic 

misclassified as malicious. 

5. Area Under the Receiver Operating 

Characteristic Curve(AUC-ROC): Determines classifier 

performance over varying thresholds; widely used for DL 

and adversarial robustness evaluations.[2,3,6,12] 

6. Resource Metrics: Latency, memory consumption, and 

computational cost are reported for lightweight and IoT 

IDS.[7,9,10,12] 

7. Adversarial Robustness Metrics: Attack success rate, 

robustness score, and perturbation resilience are 

evaluated in adversarial IDS studies.[2,3,11,13,14] 

Observations: While detection metrics are standardized, 

resource-aware and adversary evaluation metrics lack 

consistency, limiting fair comparison across studies. 

 

5.3 Benchmarking practices 

Benchmarking of IDS research has become more systematic, 

but some challenges persist: 

1. Train-Test Splits and Cross-Validation: Most studies 

follow k-fold cross-validation or temporal splits for 

model evaluation.[3,6,7,10,12] 

2. Comparison Baselines: Classical ML models (Random 

Forest, SVM, Decision Trees) are common baselines in 

DL, FL, and hybrid approaches.[1,3,6,10] 

3. Reproducibility and Open-Source Tools: A few 

works[4,5,12,16] release open-source implementations to 

facilitate reproducibility; however, dataset preprocessing 

and use of commercial architectures make replication 

difficult. 

4. Scenario-Based Evaluation: For federated IDS, 

performance is compared under non-IID data 

distributions and communication limitations.[4,5,12] 

5. Adversarial Benchmarking: Perturbation-based 

evaluation schemes are used to determine robustness 

against evasion attacks in DL and FL models.[2,3,11,13,14] 

Observations: Benchmarking practices have increased 

through scenario-specific evaluations yet missing 

standardized adversarial and IoT benchmarks remain an area 

for improvement in IDS research. 

This section features how datasets, metrics, and 

benchmarking practices are crucial in IDS research. Models 

can be benchmarked using the CIC-IDS2017, UNSW-NB15, 

IoT traffic traces, and vehicular datasets. However, 

conventional detection accuracy alone is not sufficient; 

important considerations include resource consumptions and 

further robustness against adversarial actions. These 

benchmarking procedures should be standardized, 

reproducible, and diversified across multiple scenarios in 

order to support meaningful comparisons among DL, FL, 

lightweight, adversarial, and XAI-driven IDS frameworks. In 

other words, careful choice of datasets, comprehensive 

assessment of metrics, and rigorous benchmarking protocols 

remain of critically utmost importance for resilient, scalable, 

and reliable solution development of IDS.[1-16] 

 

6. Comparative analysis of selected IDS approaches 

A comparative analysis of IDS approaches focuses their 

strengths, limitations, and suitability for various 

environments. 

 

7. Open challenges and future directions 

Despite the significant achievements in IDS research, there 

remain a number of open issues that are holding back the 

development of reliable, efficient, and interpretable solutions 

in real-world scenarios. In this section, the authors highlight 

the main gaps persisting in current IDS research efforts and 

indicate directions for further research with the aim of 

encouraging more sophisticated and robust IDS 

technologies. 

 

7.1 Data availability and diversity  

Challenges: 

1. Most of the existing IDS models rely on datasets, such as 

CIC-IDS2017, UNSW-NB15, and IoT traffic traces,[1,3, 6,7,9,12] 

which are not comprehensive of evolving attacks, zero-day 

exploits, or heterogeneous IoT/edge environments. 

2. Ground-truth labelling is usually a time-consuming and 

error-prone procedure, adversely affecting the performance  

https://gr-journals.com/about_gr.php
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Table 3: Strengths, limitations and application of trends in IDS. 

Approach Strengths Limitations Applications References 

Deep Learning (DL) High accuracy, automated 

feature extraction 

High computational 

cost, low 

interpretability 

Cloud networks, enterprise 

IDS 

[3,6,7,10,12,16] 

 

Federated Learning (FL) Privacy-preserving, 

collaborative 

learning 

Communication 

overhead, non-IID data 

IoT networks, vehicular 

networks 

[4,5,12,14] 

 

Adversarial Robust 

Resistant to evasion 

attacks 

Limited evaluation on 

real- world 

deployments 

CPS, industrial networks [2,3,5,11,13-15] 

 

 

Lightweight IDS 

Efficient, low 

latency, edge deployable 

Reduced model 

complexity may affect 

accuracy 

IoT, edge devices, UAVs [1,8,9,10] 

 

Explainable AI (XAI) 

Enhanced 

interpretability, operator 

trust 

Integration complexity 

with DL/FL 

Security operation centers, 

compliance- sensitive 

systems 

[8,10,11,16] 

of supervised learning. 

3. The lack of standardized datasets for FL and adversarial 

research implies that cross-method comparison is 

limited.[4,5,11,12-14] 

Future directions: 

1. Creation of realistic, current, multi-domain datasets 

recording IoT, vehicular, cloud, and industrial network traffic. 

2. Application of synthetic and adversarial dataset creation to 

assess robustness against evasion attacks. 

3. Standard datasets created with federated and lightweight 

distribution constraints to represent realistic deployment 

limits. 

 

7.2 Adversarial vulnerabilities  

Challenges: 

1. Deep learning and federated IDS are still vulnerable to 

adversarial attacks, viz. evasion, poisoning, and model 

inversion.[2,3,11,13,14,15] 

2. Normally, adversarial testing only covers some types of 

attacks without having generalizable assessment measures. 

Future directions: 

1. Designing universal adversarial resilience frameworks 

which can be applied across all DL and FL-based IDSs. 

2. Integrating certified robustness with formal verification 

methods to ensure reliability under attack. 

3. Investigation of adaptive defense mechanisms using 

ongoing learning for dynamic threats. 

 

7.3 Lightweight Deployment and Computational 

Efficiency 

Challenges: 

1. DL-based IDS may be computationally heavy and 

therefore not appropriate for IoT devices, edge nodes, and 

UAVs.[7,9,10] 

2. Federated IDS presents communication overhead and high 

energy consumption, especially in large-scale 

deployments.[4,5,12] 

Future directions: 

1. Ultra-lightweight architecture including knowledge 

distillation, pruning, and edge computing for real-time 

deployment. 

2. Effective methods for federated model compression and 

aggregation to deal with bandwidth and latency constraints. 

3. Context-adaptive and energy-aware IDS optimized for 

heterogeneous IoT settings. 

 

7.4 Interpretability and human-centered security  

Challenges: 

1. XAI-based IDS are still in their initial phase; most 

techniques tend to focus on post-hoc explanations without 

strong embedding in model design.[8,10,11,16] 

2. Operators need to have reliable insights for high-stakes 

decisions, but interpretability often comes at odds with 

model complexity. 

Future Directions: 

1. Designing intrinsically interpretable DL/FL architecture 

for IDS. 

2. Multi-modal explanation structures that incorporate traffic 

attributes, attack situation, and decision-making reasoning. 

3. User-centered assessment of XAI to make actionable and 

operationally useful insights. 

 

7.5 Standardization and Benchmarking  

Challenges: 

a. Non-standardized evaluation criteria for adversarial 

robustness, FL convergence, and compact IDS performance. 

b. Non-uniform benchmarking approaches make cross-study 

comparison difficult.[5,6,12,14] 

Future Directions: 

a. Standardization of metrics and evaluation pipelines by 

covering accuracy, robustness, latency, and interpretability. 

b. Open benchmarking platforms that enable reproducible, 

scalable, and comparative studies in many IDS paradigms. 

c. Integration of real-world traffic traces along with operating 
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constraints for realistic testing. 

 

7.6 Integration of emerging paradigms: future 

opportunities 

1. Hybrid IDS platforms consolidate the use of DL, FL, 

lightweight design, adversarial robustness, and XAI into end-

to-end systems.[2-12] 

2. Leverage graph neural networks, transformer models, and 

lifelong learning in adaptive threat detection.[3,6,10,12,16] 

3. Design autonomous, self-healing IDSs that are equipped 

with real-time attack mitigation and knowledge sharing over 

federated networks.[4,5,12,14] 

4. Cross-domain and cross-layer security solutions, 

exploring IoT, cloud, vehicle, and industrial control 

networks.[1,3,9,11] 

Despite the noticeable achievements in the IDS research 

landscape, there are prominent gaps in data diversity, 

adversarial robustness, interpretability, and lightweight 

deployment. These deficiencies call for unified, 

standardized, and adaptive development frameworks. At 

some point, IDS deployments will be robust, effective, 

interpretable, and scalable. Thus, they can support various 

networks against threat scenarios that evolve. 

 

8. Conclusion  

IDSs work in an environment that is typical of modern cyber-

attacks, which manifest unprecedented flexibility, 

transcontinental reach, and technical sophistication. 

Emerging networks generated from IoT devices, cloud-based 

infrastructures, edge computing architectures, and vehicular 

networks result in growing and heterogeneous traffic flows, 

hence rendering many traditional static IDS approaches 

insufficient for current protection needs in real-time. This 

increasing disparity between the capabilities of attackers and 

the detection capabilities comprises the main problem with 

which the current security paradigms are faced. To shed light 

on this dynamic landscape, this review systematically 

examines recent trends in research and synthesizes findings 

across multiple disciplines. The analysis focuses on five key 

technological themes that have driven IDS research in recent 

years, namely, deep learning, federated learning, adversarial 

robustness, lightweight models, and explainable AI. By 

interlinking these five themes, the review provides a 

cohesive and integrated overview of the state-of-the-art in 

intrusion detection technologies. Deep learning models are 

observed to provide significantly greater detection rates, 

sizeable computing cost drives the creation of less resource 

intensive counterparts. Federated intrusion detection systems 

are solutions to the data sharing problems but they also 

present additional difficulties such as imbalance in data 

transmitted, high communication expenses. The other 

problem that has not been addressed properly is that of 

adversarial robustness; many existing IDS systems do not 

have features that might make these systems resistant to 

adversarial behavior. The use of lightweight solutions 

increases the level of practical feasibility in real-world 

implementations of IDS, despite the fact that this is usually 

at the cost of lower accuracy. That is, the existing IDS studies 

are moving towards the unified paradigm of models that 

incorporate all the aspects of accuracy, privacy, 

interpretability, and efficiency in one framework. The future 

directions of IDS platforms will be based on the ability to 

learn and adapt to an environment that will include a number 

of intelligent agents and hence maintain very strong defenses 

to malicious adversaries and enhance the efficiency of the 

computing environment. The next generation IDS systems 

will be highly involved in the security of the cyber-physical 

systems. This work makes comprehensive contributions to 

IDS research through several key aspects. This study 

reviewed the development from classic machine-learning 

classifiers to deep neural networks capable of learning 

complex patterns in traffic behavior. It also provided an 

evaluation of different federated learning setups for 

collaborative detection while preserving the privacy of 

sensitive data. It investigated adversarial weaknesses and 

integrated mitigation strategies to make intrusion-detection 

systems more robust against evasion and poisoning attempts, 

together with a review of lightweight design approaches to 

enable deployment on resource-limited devices such as IoT 

and edge sensors. Finally, this study emphasized how 

explainability techniques can help operators understand 

model decisions, building trust in automated systems. 
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