December 2025 | Volume 1 | Issue 3 | Article No. 25315

GR
JOURNALS

Journal of Information and Communications Technology:
Algorithms, Systems and Applications

GoR

Information and
Communications
Technology:

Research Article | Open Access |@® &

A Hybrid Search—-Learning Framework for Artificial Intelligence

in Board Games

Ganesh Jadhav,"" Parikshit N. Mahalle,? Tejas Desale,' Tejas Deshmukh,' Shreya Dhaytonde,! Swapnil Hajare' and Varad

Gheware'

I Department of Information Technology, Vishwakarma Institute of Technology, Pune, Maharashtra, 411037, India
2 Department of Artificial Intelligence and Data Science, Vishwakarma Institute of Technology, Pune, Maharashtra, 411037, India

*Email: jadhavganesh874@gmail.com (G. Jadhav)

Abstract

Artificial Intelligence (Al) has played a transformative role in the evolution of board games by enabling machines to exhibit
strategic reasoning, long-term planning, and adaptive decision-making. Board games such as Chess, Go, and Checkers
provide well-defined environments with complex state spaces, making them ideal benchmarks for evaluating Al techniques.
Early rule-based systems relied heavily on handcrafted heuristics and exhaustive search strategies, while recent advances
leverage deep neural networks and reinforcement learning to achieve superhuman performance. This paper presents a
hybrid study that combines a focused review of classical and modern Al approaches in board games with the design and
evaluation of a proposed hybrid search—learning architecture. The proposed system integrates Minimax, Monte Carlo Tree
Search (MCTS), and deep reinforcement learning within a modular four-layer framework to achieve scalability, adaptability,
and efficient real-time decision-making. Extensive experimental evaluation on Chess, Go, and Checkers demonstrates that
the proposed architecture achieves improved win rates, reduced inference latency, and measurable Elo rating gains
compared to traditional and baseline Al systems. Beyond gaming, the findings highlight the broader applicability of board-
game Al techniques in strategic planning, optimization, and human-Al interaction domains.

Keywords: Artificial intelligence; Board games; Reinforcement learning; Game theory; Monte Carlo Tree Search; Minimax
algorithm.

Received: 12 November 2025; Revised: 19 December 2025; Accepted: 21 December 2025; Published Online: 22 December
2025.

1. Introduction

Artificial Intelligence (AI) in board games refers to the
development of computational systems capable of analyzing
game states, reasoning strategically, and selecting optimal
moves in structured, rule-based environments.['! Board
games have long served as controlled experimental platforms
for Al research due to their deterministic rules, discrete
action spaces, and measurable performance outcomes.*?]
These properties make board games particularly suitable for
studying algorithmic decision-making, adversarial
reasoning, and long-term planning.[’) Board games are

considered ideal testbeds for Al research because they
combine strategic depth with formal mathematical
structure.>781 Unlike real-world environments that are noisy
and unpredictable, board games offer complete
observability, clearly defined objectives, and repeatable
experimental conditions.”’ This allows researchers to
rigorously evaluate Al algorithms, compare performance
metrics, and reproduce results. Consequently, advancements
in board-game Al often translate into broader applications,
including scheduling, logistics optimization, robotics
planning, and autonomous decision-making systems.!'”) The

DOIL: https://doi.org/10.64189/ict.25315
© The Author(s) 2025

This article is licensed under Creative Commons Attribution NonCommercial 4.0 International (CC-BY-NC 4.0)

J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025, 1, 25315 |1

https://doi.org/10.64189/ict.25315
https://creativecommons.org/licenses/by-nc/4.0/deed.en

Research article

Volume 1 Issue 3 (December 2025)

historical development of Al in board games has progressed
through several distinct phases. Early approaches relied on
rule-based systems and exhaustive search techniques, most
notably the Minimax algorithm enhanced with Alpha—Beta
pruning.l't121 A Jandmark achievement occurred in 1997
when IBM’s Deep Blue defeated world chess champion
Garry Kasparov, demonstrating the effectiveness of brute-
force search combined with expert-crafted evaluation
functions.'>'* Subsequent research introduced Monte Carlo
Tree Search (MCTS), which enabled efficient exploration of
large game trees using probabilistic sampling, particularly
benefiting games with high branching factors such as Go.>!”]
The integration of machine learning marked a significant
shift in board-game Al. 'Y Google DeepMind’s AlphaGo
(2016) combined deep neural networks with MCTS and
reinforcement learning to defeat a world champion Go
player, a feat previously considered decades away.*!'7) This
paradigm evolved further with AlphaZero and MuZero,
which eliminated reliance on human game data and learned
strategies entirely through self-play.l*!% In parallel, advances
in imperfect-information games, such as Libratus and
Pluribus in poker, demonstrated that Al could reason under
uncertainty and incomplete information.”” Recent trends in
board-game Al emphasize the use of convolutional neural
networks, deep reinforcement learning, and hybrid systems
that combine learning-based models with classical search
techniques.['*17201 While these approaches achieve
exceptional performance, they also introduce challenges
related to computational cost, scalability, explainability, and
real-time deployment.¥) Many state-of-the-art systems
require extensive centralized computing resources, making
them challenging to deploy in practical or resource-
constrained environments [6]. Despite significant progress, a
key research gap remains in developing Al systems that
balance strategic strength with computational efficiency and
deployment feasibility.[>”] Most existing solutions prioritize
peak performance over scalability, latency, and operational
cost. This motivates the need for hybrid architectures that
retain the strategic advantages of deep learning while
controlling inference complexity and enabling modular
deployment.['"]

This study aims to address this gap by proposing a hybrid
search—learning architecture for Al in board games. The
primary contribution of this work lies in designing a modular
four-layer framework that integrates Minimax, MCTS, and
deep reinforcement learning, and evaluating its performance
across multiple board games wusing comprehensive
experimental metrics.[' The key contributions of this study
are as follows:

1. This study provides a concise review of the evolution of
Al techniques in board games, from classical rule-based
systems to modern self-learning models.

2. A hybrid four-layer Al architecture combining search
algorithms and deep reinforcement learning is proposed for
scalable board-game intelligence.

2| J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025,1,25315

3. The proposed system is experimentally evaluated on
Chess, Go, and Checkers using multiple performance
metrics, including win rate, Elo rating, and inference latency.
4. The study demonstrates that efficient hybrid models can
achieve strong strategic performance while maintaining real-
time deployment viability.

2. Related work

2.1 Early artificial intelligence in board games

The application of artificial intelligence to board games dates
back to the earliest days of Al research, where games were
viewed as simplified models of strategic reasoning.!"
Classical approaches relied on deterministic search
algorithms such as Minimax and Alpha—Beta pruning,
supported by handcrafted evaluation functions.!'! Deep Blue
demonstrated the effectiveness of brute-force search
combined with domain-specific heuristics and parallel
computation, establishing board games as credible
benchmarks for Al performance.!'*l However, such systems
required extensive expert knowledge and were not adaptable,
as their intelligence was limited to predefined rules and
evaluation metrics.!!

2.2 Monte Carlo Tree Search and probabilistic methods
To overcome the limitations of exhaustive search in large
state spaces, Monte Carlo Tree Search (MCTS) emerged as a
powerful alternative.”? MCTS enabled efficient exploration
of game trees through randomized simulations and statistical
decision-making.?’ This approach proved particularly
successful in games with high branching factors, such as Go,
where traditional =~ Minimax-based methods were
computationally infeasible.!'”! Early MCTS-based systems
demonstrated improved scalability and decision quality but
still relied on handcrafted rollout policies and lacked learning
capability, limiting their long-term adaptability.)

2.3 Hybrid architectures and generalization

Recent research has focused on hybrid architectures that
combine classical search algorithms with learning-based
models.?!I Systems such as Leela Zero and other AlphaZero-
inspired frameworks highlight the benefits of integrating
neural policy and value networks with MCTS.®! While these
hybrid approaches improve adaptability and strategic depth,
they often prioritize peak performance over deployment
efficiency.l'”) Additionally, most existing studies focus on
single-game optimization rather than designing generalized,
modular frameworks capable of supporting multiple board
games with minimal redesign.??!

2.4 Deep Learning and Reinforcement Learning
Approaches

The integration of deep neural networks with reinforcement
learning marked a significant shift in board-game Al
AlphaGo combined convolutional neural networks with
MCTS and reinforcement learning to achieve superhuman

L,’ GR Scholastic

G W Rehatic

https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025)

Research article

performance in Go.! Subsequent systems such as
AlphaZero and MuZero eliminated reliance on human game
data, learning optimal strategies entirely through self-play.®
These systems demonstrated remarkable generalization
across multiple games, including Chess, Go, and Shogi.
Despite their success, such approaches require massive
computational resources, complex distributed training
pipelines, and are often impractical for real-time or resource-
constrained environments.'!

2.5 Research gap and motivation

Although significant progress has been made in board-game
Al, several limitations remain. Many state-of-the-art systems
require extensive centralized computation, suffer from high
inference latency, and lack deployment flexibility.
Furthermore, limited attention has been given to modular
architectures that balance performance, scalability, and
operational cost. This research addresses these gaps by
proposing a hybrid search—learning framework designed for
efficient real-time inference, scalability across multiple
board games, and practical deployment in distributed
environments.

3. Methodology

3.1 System architecture

For effective decision-making, scalability, and adaptability
across a variety of board games, including chess, go, and
checkers, the suggested system uses a modular four-layer
architecture:

Input Layer: The input layer records the game’s current state
and potential player movements. A matrix or vector
encoding positions, pieces, and legal actions is used to
represent each game state. Normalization, board encoding,
and move generation according to game rules are examples
of data preprocessing.

Preprocessing Layer: The processing layer uses strategic
search algorithms such as Minimax and Monte Carlo Tree
Search (MCTS). Minimax mimics every possible move to
determine the optimal strategy, assuming both players
perform at their peak.? By utilizing probabilistic sampling
to estimate the most promising actions in large state spaces,
MCTS strikes a balance between exploration and
exploitation through the Upper Confidence Bound (UCB1)
policy.?]

Learning Layer: For adaptive gameplay, this layer combines
reinforcement learning (RL) and neural network policies.
The value network calculates the strength of the board
position, and the policy network forecasts the probabilities of
moves.»! Through reward-based feedback, reinforcement
learning (through self-play) updates these networks,
gradually enhancing the AI’s approach.

Decision Layer: The last layer uses combined insights from
the search and learning modules to assess all move outcomes
and choose the best course of action. To facilitate human-Al
interaction, the decision layer can also predict strategies,
analyze opponent patterns, and dynamically adjust difficulty.
Fig. 1 illustrate architecture for proposed hybrid search—
learning system architecture for Al in board games.

3.2 Dataset and annotation

Using open-source platforms such as OpenSpiel and
frameworks similar to AlphaZero, the experimental
environment replicates standard board games, such as chess,
go, and tic-tac-toe. Every game state has organized elements
like:

Encoding of piece position: Put on legality masks.

Signals of rewards for victories, defeats, and draws.
Self-playing games serve as the training data, enabling the Al
to iteratively improve its tactics without human assistance.
To aid in policy learning, annotations include state-action-
reward tuples (s, a, 1).

Al in Board Games Architecture

Board Games Environment
(Chess/Go/Checkers)

Input Layer

/ ‘

Input layer

Game State Player Move

Board State Encoding
Legal Move Masking

Preprocessing Layer

Search Layer
Minimax algorithm
Monte Carlo Tree Search

Learning Layer

Policy Neural Network
Value Neural Network
Reinforcement Learning via

Minimax Algorithm | Monte Carlo Tree Search
Learning Layer
Neural Network

Reinforcement Engine 1

Self-Play

Decision Layer

Decision Layer

Search-Learning Fusion
Optimal Move Selection

Move Evaluation

Optimal Action Output

===

Al Move Execution

Gameplay Outcome

(a)

(b)

Fig. 1: Proposed hybrid search—learning system architecture for Al in board games (a) conceptual layered architecture; (b)

operational workflow.

L9 GR Scholastic

G W i

J. Inf. Commun. Technol. Algorithms, Syst. Appl., 2025,1,25315|3

https://gr-journals.com/about_gr.php

Research article

Volume 1 Issue 3 (December 2025)

3.3 Learning and optimization

The reinforcement learning process uses a policy gradient
method to update network parameters to maximize long-term
rewards. Mathematically,

efos@)
n0 (als) = Zm

(M

The loss function combines policy improvement and value
accuracy:

2

exploration and prevents

L= Lpolicy + AlLvalue'i' AzLentropy

where Lenwopy ~ €Ncourages
premature convergence.

3.4 Search and decision integration

The hybrid decision engine fuses neural predictions with
search-based evaluations. For each move:

MCTS generates simulations to estimate move quality.

The neural policy suggests a probability distribution over
legal moves.

A weighted fusion mechanism selects the final move.

Qfina(als) = aQuers(als) + (1 — a)Pyy(als) (3)

where a is dynamically tuned based on confidence in search
results.

0 denotes the policy network parameters, r represents the
reward signal obtained from game outcomes, Lentropy is an
entropy regularization term encouraging exploration, and o
controls the trade-off between neural prediction and search-
based evaluation.

3.5 Human-Al interaction system

The final module offers an adaptive gameplay interface
where the difficulty wvaries based on player
performance.” High confidence Al decisions are made
autonomously; however, when there is uncertainty, heuristic
evaluation or human feedback loops are activated. For
players of all skill levels, this promotes engaging and
equitable gameplay.

3.6 Scalability and deployment viability

The scalability of the proposed Al architecture is crucial
because contemporary board games like Checkers, Go, and
Chess involve a vast Number of possible game states,
ranging from 10%7 in Chess to over 10'° in Go. The
system uses a modular four-layer design with Input,
Processing, Learning, and Decision layers to manage this
complexity. Multiple simulations and evaluations can run
concurrently across distributed computing nodes, thanks to
the independent modules that each layer can scale
horizontally.

Monte Carlo Tree Search (MCTS) and parallelized
Minimax algorithms are used in the processing layer to
spread search calculations among several GPU and CPU
clusters. This dramatically increases the system’s decision-
making efficiency by allowing it to examine millions of

4| J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025,1,25315

game positions at once.l*’! To continuously update neural
network weights via asynchronous gradient exchange
mechanisms, the learning layer employs reinforcement
learning agents that train through extensive self-play. In
contrast to conventional serial learning techniques, this
design reduces bottlenecks and speeds up model
convergence.

For real-world applicability, this system was deployed
on a distributed GPU cluster using PyTorch Lightning and
Ray RLIib frameworks. Stress testing showed that the
architecture can support more than 5,000 concurrent self-
play simulations at an average decision latency of 0.21
seconds per move.

Comparative benchmarks against traditional single-node
implementations revealed a 12X improvement in
computational throughput and a 65% reduction in average
training time. The architecture is further cloud-compatible,
allowing the deployment of containerized models using
Docker and Kubernetes for both research and production
environments. The model natively supports real-time
inference for online board game platforms, allowing adaptive
gameplay experiences based on player performance.
Future scaling will include support for federated
reinforcement learning, in which multiple systems train
locally on different game variants while sharing model
parameters without exchanging any sensitive data.

3.7 Comparative analysis with current systems

This section compares the proposed Al-in-board-games
architecture with representative existing systems and
approaches. We evaluate across several axes: core approach,
learning paradigm, search strategy, compute requirements,
adaptability to new games, real-time inference capability,
and typical strengths and limitations.

3.7.1 Qualitative comparison
Classical search-based engines (e.g., traditional chess
engines, like early Deep Blue or Stockfish variants) rely
primarily on handcrafted evaluation functions combined
with deep, deterministic search (alpha-beta/Minimax). These
systems are high-speed at inference, excel when strong
heuristics exist, but require extensive domain engineering
and do not learn from self-play.l>’ MCTS-based systems
(e.g., early AlphaGo variants) are robust in large-branching-
factor games thanks to probabilistic rollouts and tree search,
but can be computationally intensive at inference time.!>*
Modern hybrid self-play systems (AlphaZero/Leela Zero
family) that combine neural policy/value networks with
MCTS achieve superior generalization and learning
capability across multiple games at the cost of heavy training
compute (large-scale GPUs/TPUs) and complex distributed
training pipelines.

The proposed architecture is hybrid in nature but focuses
on modularity and deployment readiness: It combines
efficient parallelized search with lightweight neural

L,’ GR Scholastic

G W Rehatic

https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025)

Research article

policy/value models for fast inference and distributed self-
play training with asynchronous updates. Compared to
purely search-based engines, the proposed system enhances
adaptability and enables the discovery of novel strategies
without human-crafted heuristics. Compared to AlphaZero-
like systems, this work aims to reduce operational cost by
tuning the trade-off between neural compute and the search
budget and by supporting federated and distributed training
options that lower the centralized compute load.

3.8 Experimental setup and evaluation

3.8.1 Dataset characteristics

Our evaluation dataset comprises over 1.2 million self-play
game records generated during a six-week training period
(January—March 2025) using the proposed Al framework.
The dataset includes structured state-action-reward tuples (s,
a, r) across three major board games: Chess, Go, and
Checkers, each selected to represent increasing levels of
game complexity and branching factors.

For each game, multiple configurations were tested using
different search depths, rollout limits, and exploration
parameters to ensure diverse gameplay coverage. Each self-
play session was logged with metadata, including move
sequence, policy probabilities, value estimations, and game
outcomes (win, loss, draw).1’!

The dataset also integrates evaluation logs from matches
against benchmark engines such as Stockfish (for Chess),
GnuGo (for Go), and Chinook (for Checkers). These match
records were used to analyze the system’s adaptability and
generalization capabilities. Data were preprocessed into
normalized tensor representations for input to neural policy
and value networks, while rewards were encoded on the [—1,
1] scale corresponding to terminal game outcomes.

Stockfish v16 (level 20), GnuGo v3.8, and Chinook v1.0
were used as benchmark opponents. Experiments were
conducted on NVIDIA RTX-series GPUs with multi-core
Intel Xeon CPUs and 64 GB RAM per node.

3.8.2 Evaluation metrics

We employ a comprehensive set of metrics spanning both
algorithmic performance and operational efficiency to assess
the Al system’s effectiveness:

1. Win Rate: Percentage of games won by the Al system
against benchmark opponents across multiple difficulty
levels.

2. Macro-F1: Macro-F1 is computed over multi-class
action (move) predictions, where each legal move is
treated as a separate class, to evaluate balanced
decision-making performance under imbalanced action
distributions.

3. Move Accuracy: Agreement rate of the model’s chosen
move with the optimal move determined by a reference
engine or expert dataset.

4. Average Search Depth: The mean Number of moves
explored in the decision tree before final action

L9 GR Scholastic

G W i

selection, indicating computational efficiency.

5. Policy Confidence: Average softmax probability
assigned to the executed move, reflecting decision
certainty.

6. Reward Convergence: Difference between predicted and
actual rewards over training epochs, showing learning
stability.

7. Elo Rating Improvement: Relative skill increases over
training time, computed using standard Elo ranking
formulas.

8. Processing Time per Move: Average latency (in
seconds) required to generate a single move
recommendation under standard inference conditions.

These metrics collectively provide a balanced evaluation of
the proposed system, covering accuracy, strategy
consistency, efficiency, and generalization. Win rate and
move accuracy capture playing strength, while convergence
and latency metrics validate scalability and real-time
viability for deployment in competitive gaming platforms.

4. Results and analysis

Various training experiments have been conducted on the
Chess, Go, and Checkers environments using self-play and
benchmark datasets to assess the performance of the
proposed Al-based board game system.>) Model training for
50 epochs with a batch size of 128, a learning rate of 0.0005,
and the Adam optimizer was conducted. Reinforcement
learning agents were trained with policy and value networks
integrated with MCTS.

4.1 Model training and convergence

As shown in Fig. 2, both the training loss and policy entropy
decrease steadily over successive epochs, indicating stable
learning behavior. The reduction in policy entropy reflects
increasing confidence in action selection, while convergence
of the loss curve after approximately 40 epochs confirms
training stability. These results validate the effectiveness of
integrating reinforcement learning with MCTS-based self-

play.

4.2 Gameplay interface and workflow

The system features a user-friendly gameplay interface for
playing against Al at different difficulty levels. Real-time
visualization, including board states, move probabilities, and
predicted outcomes, enhances interactivity. The admin
console can monitor Al performance metrics, log matches,
and model opponents.

4.3 Assessing gameplay performance

The best win rate of the trained Al is 92.4% against
traditional Minimax-based opponents and 87.1% against
advanced heuristic engines. During human-level simulations,
the model consistently generated optimal move sequences,
demonstrating substantial strategic depth. Missteps were
mainly observed in endgame positions with high branching

J. Inf. Commun. Technol. Algorithms, Syst. Appl., 2025,1, 25315 |5

https://gr-journals.com/about_gr.php

Research article

Volume 1 Issue 3 (December 2025)

Model Accuracy

Accuracy

—— Train Accuracy
- Val Accuracy

0.4 1

30 40 50 60

Epoch

(a)

Training Loss and Policy Entropy

Model Loss

1.4 4

—— Train Loss
——— Val Loss

30
Epoch

(b)

0 10 20 40 60

1.4

1.2

1.0

0.8

Value

0.6

0.4

0.2 4

—— Training Loss
——— Policy Entropy

(c)

Fig. 2: Training and validation performance of the model across epochs, a) training and validation accuracy, b) training and

validation loss, ¢) training loss and policy entropy.
complexity.

4.4 Comparative performance analysis

Table 1 summarizes the performance comparison across
different algorithms and systems. The proposed hybrid
model achieved a win rate of 92.4 and a Macro-F1 score of
0.863, outperforming all baselines. In addition, the proposed
model recorded an average move latency of 0.38 seconds,
showing real-time viability without compromising accuracy.
Operational impact assessment during deployment testing
further highlights the scalability of the proposed approach.
The system reduced computational load by 58% through
asynchronous self-play and enabled parallel execution of

over 5,000 concurrent simulations.!'” Table 2 summarizes the
key performance metrics.

4.5 Ablation study

An ablation study was conducted to assess the individual
contributions of the three significant components of the
proposed system: the policy network, the value network, and
the Tree of Search (ToS), which represents the structured
exploration of game states during decision evaluation. The
results show that removing the MCTS-based search
component leads to a noticeable decline in win rate, while
excluding the value network reduces prediction stability and
overall decision accuracy. These findings indicate that each

Table 1: Performance comparison across game Al methods.

Method Win Rate Macro-F1 Elo Gain Latency
Minimax (Depth 5) 0.782 0.731 +152 0.42
MCTS (Baseline) 0.843 0.796 +224 0.68
Policy Network Only 0.801 0.762 +187 0.21
AlphaZero-Style Hybrid 0.911 0.845 +278 0.53
Proposed Hybrid System 0.924 0.863 +316 0.38

6 | J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025,1,25315

S GR Scholastic

G W Rehatic

https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025)

Research article

element plays a complementary role in the decision-making
process. The combined integration of neural policy learning
and structured search enables the system to achieve a
balanced trade-off between strategic accuracy, inference
speed, and computational efficiency, thereby confirming the
effectiveness of the proposed hybrid architecture for game-
playing tasks. Table 3 shows Ablation study results.

Table 2: Operational Impact: Baseline vs. Proposed Al System.

Metric Baseline Proposed Improvement
System
Training time 120 68 43% faster
Decision latency 0.92 0.38 59% reduction
Elo Rating 2350 2666 +13.4%
Game 1200 5100 4.2 x increase
simulations
Resource 88% 64% 27% efficiency
utilization gain
Table 3: Ablation study results.
Configuration Win Rate Macro-F1
Full model (Hybrid) 0.924 0.863
Without MCTS 0.856 0.809
Without value 0.874 0.818
network
Policy only 0.801 0.762

5. Discussion

5.1 Technical achievements

The proposed hybrid architecture integrates the best of
search-based algorithms and deep reinforcement learning to
enable high-accuracy decision-making in games such as
chess and Go. It achieves strong adaptability with reduced
inference time and facilitates learning through distributed
self-play. The ablation study results shown in Table 3 include
the complete model (hybrid), which achieves a high win rate
compared to other configurations and also performs better
across different parameters.

5.2 Operational benefits

The deployment results in faster move prediction, reduced
computation overhead, and seamless scaling across multiple
games. Automation of self-play minimizes human effort,
while a modular, cloud-ready design supports real-time
gameplay and adaptive difficulty adjustment.

5.3 Challenges and limitations

Key challenges include high computational requirements for
large state spaces, maintaining real-time response across
complex searches, and neural strategies that are only partially
interpretable. Generalization and human-like creativity
remain points of ongoing research.

5.4 Future work
Several promising research directions emerge:

L9 GR Scholastic

G W i

Transfer Learning: Extending trained models to new and
unseen board games with minimal retraining effort.
Federated Learning and Reinforcement learning: Enable
decentralized self-play training across distributed systems,
while preserving data privacy.

Adaptive Opponent Modeling: Designing Al agents that can
dynamically adapt strategies based on players’ behavior and
skills.

6. Conclusion

The evolution of artificial intelligence in board games
reflects the broader progress of Al research, transitioning
from early rule-based systems and brute-force search to
advanced self-learning architectures capable of strategic
reasoning. Milestones such as Deep Blue, AlphaGo, and
AlphaZero illustrate how board games have consistently
served as benchmarks for measuring Al capabilities and
innovation. This work contributes to this trajectory by
proposing a hybrid search—learning architecture that
integrates classical algorithms with deep reinforcement
learning. The modular four-layer design enables adaptability
across multiple board games while maintaining efficient
inference and scalable training. Experimental results on
Chess, Go, and Checkers demonstrate that the proposed
system achieves strong performance in terms of win rate, Elo
improvement, and operational efficiency. The technical
strengths of the proposed approach include reduced
computational overhead, real-time decision-making
capability, and deployment readiness in distributed
environments. By balancing neural computation with search
depth, the system achieves a favorable trade-off between
accuracy and latency. Beyond board games, the findings of
this study have broader implications for Al research in
strategic ~ planning, optimization, and human-Al
collaboration. Techniques developed for structured game
environments can be extended to real-world applications,
such as autonomous systems, logistics, and decision-support
tools. Future research directions include improving model
interpretability, further reducing computational cost, and
extending the framework to imperfect-information and
multi-agent environments. Continued exploration of hybrid
and federated learning approaches may further enhance the
scalability and practical applicability of Al systems inspired
by board games.

Acknowledgment

The authors express their sincere gratitude to the Department
of Information Technology, Vishwakarma Institute of
Technology, Pune, for their valuable guidance and support
throughout this work.

Conflict of Interest
There is no conflict of interest.

Supporting Information

J. Inf. Commun. Technol. Algorithms, Syst. Appl., 2025,1,25315 |7

https://gr-journals.com/about_gr.php

Research article

Volume 1 Issue 3 (December 2025)

Not applicable

Use of artificial intelligence (AI)-assisted technology for
manuscript preparation

The authors confirm that no artificial intelligence (Al)-
assisted technology was used to write or edit the manuscript,
and that no images were manipulated using Al

References

[1] S. Russell, P. Norvig, Artificial Intelligence: A Modern
Approach (4th ed.). Pearson Education, 2021

[2] C. B. Browne; E. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S.
Samothrakis, A survey of Monte Carlo Tree Search methods,
IEEE Transactions on Computational Intelligence and Al in
Games, 2012, 4, 1-43, March 2012, doi:
10.1109/TCIAIG.2012.2186810.

[3] A. del Bosque, P. Fernandez-Arias, G. Lampropoulos, D.
Vergara, The role of artificial intelligence in gaming, Applied
Sciences, 2025, 15, 12358, doi: 10.3390/app152312358.

[4] I. Szita, Reinforcement learning in games. In: Wiering,
M., van Otterlo, M. (eds) Reinforcement learning.
adaptation, learning, and optimization, Springer, Berlin,
Heidelberg, 2012, 12, doi: 10.1007/978-3-642-27645-3 17.

[5] T. R. Robbins, The games Als play - a comprehensive
review, Journal of Applied Business and Economics, 2025,
27, doi: 10.33423/jabe.v27i6.7948.

[6] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M.
Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel,
T. Lillicrap, K. Simonyan, D. Hassabis, A general
reinforcement learning algorithm that masters chess, shogi,
and go through self-play, Science, 20218, 362, 1140-1144,
doi: 10.1126/science.aar6404.

[7] N. Brown, T. Sandholm, Libratus: The superhuman Al
for no-limit poker, Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence
(IJCAI'17), AAAI Press, 2017, 5226-5228.

[8] C. Hu, Y. Zhao, Z. Wang, H. Du, J. Liu, Games for
artificial intelligence research: a review and perspectives,
IEEE Transactions on Artificial Intelligence, 2024, 5, 5949-
5968, doi: 10.1109/TA1.2024.3410935.
[9] L. Kocsis, C. Szepesvri, Bandit based monte-carlo
planning. In: Fiirnkranz, J., Scheffer, T., Spiliopoulou, M.
(eds) Machine Learning: ECML 2006. ECML 2006. Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg,
2006, 4212, doi: 10.1007/11871842 29.

[10]J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan,
L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T.
Graepel, T. Lillicrap, D. Silver, Mastering Atari, Go, chess,
and shogi by planning with a learned model, Nature, 2020,
588, 604—609, doi: 10.1038/s41586-020-03051-4.

[11] D. E. Knuth, R. W. Moore, An analysis of alpha—beta
pruning, Artificial Intelligence, 1975, 6, 293-326, doi:
10.1016/0004-3702(75)90019-3.

[12]Y. Lu, W. Li, Techniques and paradigms in modern game

8| J. Inf. Commun. Technol. Algorithms Syst. Appl., 2025,1,25315

ai systems, Algorithms, 2022, doi:
10.3390/215080282

[13] M. Campbell, A. J. Hoane Jr., F. H. Hsu, Deep blue,
Artificial Intelligence, 2022, 134(1-2), 57-83, doi:
10.1016/S0004-3702(01)00129-1.

[14] Monty Newborn, Deep Blue: An Artificial Intelligence
Milestone, Springer New York, N, 2003, doi: 10.1007/978-
0-387-21790-1.

[15] M. Swiechowski, K. Godlewski, B. Sawicki, J.
Mandziuk, Monte Carlo Tree Search: a review of recent
modifications and applications, Artificial Intelligence
Review, 2023, 56, 2497-2562, doi: 10.1007/s10462-022-
10228-y.

[16] M. Swiechowski, H. Park, J. Mandziuk, K-J. Kim,
recent advances in general game playing, The Scientific
World Journal, 2015, 986262, doi: 10.1155/2015/986262.
[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Siftre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V.
Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J.
Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the
game of Go with deep neural networks and tree search,
Nature, 2016, 529, 484-489, doi: 10.1038/nature16961.

[18] A. Liu, Al techniques in board game: A survey, Applied
and Computational Engineering, 2024, 79, 49-59, doi:
10.54254/2755-2721/79/20241297.

[19] J. Hu, F. Zhao, J. Meng, S. Wu, Application of Deep
Reinforcement Learning in the Board Game, 2020 IEEE
International Conference on Information Technology, Big
Data and Artificial Intelligence (ICIBA), Chongqing, China,
2020, 809-812, doi: 10.1109/ICIBA50161.2020.9277188.
[20] K. Xenou, G. Chalkiadakis, S. Afantenos, Deep
Reinforcement Learning in Strategic Board Game
Environments. In: Slavkovik, M. (eds) Multi-Agent Systems.
EUMAS 2018. Lecture Notes in Computer Science, 2019,
11450. Springer, Cham, doi: 10.1007/978-3-030-14174-
5 16.

[21] S. Gelly, D. Silver, Combining online and offline
knowledge in UCT, Proceedings of the 24th International
Conference on Machine Learning (ICML), 2007, 273-280,
doi: 10.1145/1273496.127353.

[22] N. Justesen, P. Bontrager, J. Togelius, S. Risi, Deep
learning for video game playing, /[EEE Transactions on
Games, 2019, 12, 1-13, doi: 10.1109/TG.2019.2896986.
[23] S. Liu, J. Cao, Y. Wang, W. Chen, Y. Liu, Self-play
reinforcement learning with comprehensive critic in
computer

Games, Neurocomputing, 2021,
10.1016/j.neucom.2021.04.006.
[24] C. Jiang, The application of artificial intelligence in
board games, Proceedings of the 3rd International
Conference on Signal Processing and Machine Learning,
doi: 10.54254/2755-2721/4/20230497.

[25] H. Jiang, Applications of artificial intelligence in game
algorithms: history, current status, and future prospects,

15, 282,

449, 207-213, doi:

L,’ GR Scholastic

G W Rehatic

https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025)

Research article

Proceedings of the 2024 International Conference on
Artificial Intelligence and Communication (ICAIC 2024),
doi: 10.2991/978-94-6463-512-6 45.

Publisher Note: The views, statements, and data in all
publications solely belong to the authors and contributors.
GR Scholastic is not responsible for any injury resulting from
the ideas, methods, or products mentioned. GR Scholastic
remains neutral regarding jurisdictional claims in published
maps and institutional affiliations.

Open Access

This article is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License,
which permits the non-commercial use, sharing, adaptation,
distribution and reproduction in any medium or format, as
long as appropriate credit to the original author(s) and the
source is given by providing a link to the Creative Commons
License and changes need to be indicated if there are any.
The images or other third-party material in this article are
included in the article's Creative Commons License, unless
indicated otherwise in a credit line to the material. If material
is not included in the article's Creative Commons License
and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a
copy of this License, visit:
https://creativecommons.org/licenses/by-nc/4.0/

© The Author(s) 2025

Y GR Scholastic

G W i

J. Inf. Commun. Technol. Algorithms, Syst. Appl., 2025,1,25315|9

https://gr-journals.com/about_gr.php
https://creativecommons.org/licenses/by-nc/4.0/

