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1. Introduction 

Artificial Intelligence (AI) in board games refers to the 

development of computational systems capable of analyzing 

game states, reasoning strategically, and selecting optimal 

moves in structured, rule-based environments.[1-3] Board 

games have long served as controlled experimental platforms 

for AI research due to their deterministic rules, discrete 

action spaces, and measurable performance outcomes.[4,5] 

These properties make board games particularly suitable for 

studying algorithmic decision-making, adversarial 

reasoning, and long-term planning.[6] Board games are 

considered ideal testbeds for AI research because they 

combine strategic depth with formal mathematical 

structure.[2,7,8] Unlike real-world environments that are noisy 

and unpredictable, board games offer complete 

observability, clearly defined objectives, and repeatable 

experimental conditions.[9] This allows researchers to 

rigorously evaluate AI algorithms, compare performance 

metrics, and reproduce results. Consequently, advancements 

in board-game AI often translate into broader applications, 

including scheduling, logistics optimization, robotics 

planning, and autonomous decision-making systems.[10] The 
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historical development of AI in board games has progressed 

through several distinct phases. Early approaches relied on 

rule-based systems and exhaustive search techniques, most 

notably the Minimax algorithm enhanced with Alpha–Beta 

pruning.[1,11,12] A landmark achievement occurred in 1997 

when IBM’s Deep Blue defeated world chess champion 

Garry Kasparov, demonstrating the effectiveness of brute-

force search combined with expert-crafted evaluation 

functions.[13,14] Subsequent research introduced Monte Carlo 

Tree Search (MCTS), which enabled efficient exploration of 

large game trees using probabilistic sampling, particularly 

benefiting games with high branching factors such as Go.[9,15] 

The integration of machine learning marked a significant 

shift in board-game AI. [16] Google DeepMind’s AlphaGo 

(2016) combined deep neural networks with MCTS and 

reinforcement learning to defeat a world champion Go 

player, a feat previously considered decades away.[6,17] This 

paradigm evolved further with AlphaZero and MuZero, 

which eliminated reliance on human game data and learned 

strategies entirely through self-play.[6,10] In parallel, advances 

in imperfect-information games, such as Libratus and 

Pluribus in poker, demonstrated that AI could reason under 

uncertainty and incomplete information.[7] Recent trends in 

board-game AI emphasize the use of convolutional neural 

networks, deep reinforcement learning, and hybrid systems 

that combine learning-based models with classical search 

techniques.[10,17-20] While these approaches achieve 

exceptional performance, they also introduce challenges 

related to computational cost, scalability, explainability, and 

real-time deployment.[4] Many state-of-the-art systems 

require extensive centralized computing resources, making 

them challenging to deploy in practical or resource-

constrained environments [6]. Despite significant progress, a 

key research gap remains in developing AI systems that 

balance strategic strength with computational efficiency and 

deployment feasibility.[2,9] Most existing solutions prioritize 

peak performance over scalability, latency, and operational 

cost. This motivates the need for hybrid architectures that 

retain the strategic advantages of deep learning while 

controlling inference complexity and enabling modular 

deployment.[11] 

This study aims to address this gap by proposing a hybrid 

search–learning architecture for AI in board games. The 

primary contribution of this work lies in designing a modular 

four-layer framework that integrates Minimax, MCTS, and 

deep reinforcement learning, and evaluating its performance 

across multiple board games using comprehensive 

experimental metrics.[1,10] The key contributions of this study 

are as follows: 

1. This study provides a concise review of the evolution of 

AI techniques in board games, from classical rule-based 

systems to modern self-learning models. 

2. A hybrid four-layer AI architecture combining search 

algorithms and deep reinforcement learning is proposed for 

scalable board-game intelligence. 

3. The proposed system is experimentally evaluated on 

Chess, Go, and Checkers using multiple performance 

metrics, including win rate, Elo rating, and inference latency. 

4. The study demonstrates that efficient hybrid models can 

achieve strong strategic performance while maintaining real-

time deployment viability. 

 

2. Related work 

2.1 Early artificial intelligence in board games 

The application of artificial intelligence to board games dates 

back to the earliest days of AI research, where games were 

viewed as simplified models of strategic reasoning.[1] 

Classical approaches relied on deterministic search 

algorithms such as Minimax and Alpha–Beta pruning, 

supported by handcrafted evaluation functions.[1] Deep Blue 

demonstrated the effectiveness of brute-force search 

combined with domain-specific heuristics and parallel 

computation, establishing board games as credible 

benchmarks for AI performance.[13] However, such systems 

required extensive expert knowledge and were not adaptable, 

as their intelligence was limited to predefined rules and 

evaluation metrics.[1] 

 

2.2 Monte Carlo Tree Search and probabilistic methods 

To overcome the limitations of exhaustive search in large 

state spaces, Monte Carlo Tree Search (MCTS) emerged as a 

powerful alternative.[9] MCTS enabled efficient exploration 

of game trees through randomized simulations and statistical 

decision-making.[2] This approach proved particularly 

successful in games with high branching factors, such as Go, 

where traditional Minimax-based methods were 

computationally infeasible.[17] Early MCTS-based systems 

demonstrated improved scalability and decision quality but 

still relied on handcrafted rollout policies and lacked learning 

capability, limiting their long-term adaptability.[9] 

 

2.3 Hybrid architectures and generalization 

Recent research has focused on hybrid architectures that 

combine classical search algorithms with learning-based 

models.[21] Systems such as Leela Zero and other AlphaZero-

inspired frameworks highlight the benefits of integrating 

neural policy and value networks with MCTS.[6] While these 

hybrid approaches improve adaptability and strategic depth, 

they often prioritize peak performance over deployment 

efficiency.[10] Additionally, most existing studies focus on 

single-game optimization rather than designing generalized, 

modular frameworks capable of supporting multiple board 

games with minimal redesign.[22] 

 

2.4 Deep Learning and Reinforcement Learning 

Approaches 
The integration of deep neural networks with reinforcement 

learning marked a significant shift in board-game AI. 

AlphaGo combined convolutional neural networks with 

MCTS and reinforcement learning to achieve superhuman 
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performance in Go.[23] Subsequent systems such as 

AlphaZero and MuZero eliminated reliance on human game 

data, learning optimal strategies entirely through self-play.[6] 

These systems demonstrated remarkable generalization 

across multiple games, including Chess, Go, and Shogi. 

Despite their success, such approaches require massive 

computational resources, complex distributed training 

pipelines, and are often impractical for real-time or resource-

constrained environments.[10] 

 

2.5 Research gap and motivation 

Although significant progress has been made in board-game 

AI, several limitations remain. Many state-of-the-art systems 

require extensive centralized computation, suffer from high 

inference latency, and lack deployment flexibility. 

Furthermore, limited attention has been given to modular 

architectures that balance performance, scalability, and 

operational cost. This research addresses these gaps by 

proposing a hybrid search–learning framework designed for 

efficient real-time inference, scalability across multiple 

board games, and practical deployment in distributed 

environments. 

 

3. Methodology 

3.1 System architecture 

For effective decision-making, scalability, and adaptability 

across a variety of board games, including chess, go, and 

checkers, the suggested system uses a modular four-layer 

architecture: 

Input Layer: The input layer records the game’s current state 

and potential player movements. A matrix or vector 

encoding positions, pieces, and legal actions is used to 

represent each game state. Normalization, board encoding, 

and move generation according to game rules are examples 

of data preprocessing. 

Preprocessing Layer: The processing layer uses strategic 

search algorithms such as Minimax and Monte Carlo Tree 

Search (MCTS). Minimax mimics every possible move to 

determine the optimal strategy, assuming both players 

perform at their peak.[24] By utilizing probabilistic sampling 

to estimate the most promising actions in large state spaces, 

MCTS strikes a balance between exploration and 

exploitation through the Upper Confidence Bound (UCB1) 

policy.[25] 

Learning Layer: For adaptive gameplay, this layer combines 

reinforcement learning (RL) and neural network policies. 

The value network calculates the strength of the board 

position, and the policy network forecasts the probabilities of 

moves.[25] Through reward-based feedback, reinforcement 

learning (through self-play) updates these networks, 

gradually enhancing the AI’s approach. 

Decision Layer: The last layer uses combined insights from 

the search and learning modules to assess all move outcomes 

and choose the best course of action. To facilitate human-AI 

interaction, the decision layer can also predict strategies, 

analyze opponent patterns, and dynamically adjust difficulty. 

Fig. 1 illustrate architecture for proposed hybrid search–

learning system architecture for AI in board games. 

 

3.2 Dataset and annotation 

Using open-source platforms such as OpenSpiel and 

frameworks similar to AlphaZero, the experimental 

environment replicates standard board games, such as chess, 

go, and tic-tac-toe. Every game state has organized elements 

like: 

Encoding of piece position: Put on legality masks. 

Signals of rewards for victories, defeats, and draws. 

Self-playing games serve as the training data, enabling the AI 

to iteratively improve its tactics without human assistance. 

To aid in policy learning, annotations include state-action-

reward tuples (s, a, r). 

 
Fig. 1: Proposed hybrid search–learning system architecture for AI in board games (a) conceptual layered architecture; (b) 

operational workflow. 
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3.3 Learning and optimization 

The reinforcement learning process uses a policy gradient 

method to update network parameters to maximize long-term 

rewards. Mathematically, 

𝜋𝜃 (𝑎|𝑠) = ∑
𝑒𝑓𝜃(𝑠,𝑎)

𝑒𝑓𝜃(𝑠,𝑎)                         (1) 

The loss function combines policy improvement and value 

accuracy: 

𝐿 = 𝐿𝑝𝑜𝑙𝑖𝑐𝑦 + 𝜆1𝐿𝑣𝑎𝑙𝑢𝑒+ 𝜆2𝐿𝑒𝑛𝑡𝑟𝑜𝑝𝑦              (2) 

where Lentropy encourages exploration and prevents 

premature convergence. 

 

3.4 Search and decision integration 

The hybrid decision engine fuses neural predictions with 

search-based evaluations. For each move: 

MCTS generates simulations to estimate move quality. 

The neural policy suggests a probability distribution over 

legal moves. 

A weighted fusion mechanism selects the final move. 

𝑄𝑓𝑖𝑛𝑎𝑙(𝑎|𝑠) = 𝛼𝑄𝑀𝐶𝑇𝑆(𝑎|𝑠) + (1 − 𝛼)𝑃𝑁𝑁(𝑎|𝑠)       (3) 

where α is dynamically tuned based on confidence in search 

results. 

 θ denotes the policy network parameters, r represents the 

reward signal obtained from game outcomes, Lentropy is an 

entropy regularization term encouraging exploration, and α 

controls the trade-off between neural prediction and search-

based evaluation. 

 

3.5 Human-AI interaction system 

The final module offers an adaptive gameplay interface 

where the difficulty varies based on player 

performance.[7] High confidence AI decisions are made 

autonomously; however, when there is uncertainty, heuristic 

evaluation or human feedback loops are activated. For 

players of all skill levels, this promotes engaging and 

equitable gameplay. 

 

3.6 Scalability and deployment viability 

The scalability of the proposed AI architecture is crucial 

because contemporary board games like Checkers, Go, and 

Chess involve a vast Number of possible game states, 

ranging from 1047 in Chess to over 10170 in Go. The 

system uses a modular four-layer design with Input, 

Processing, Learning, and Decision layers to manage this 

complexity. Multiple simulations and evaluations can run 

concurrently across distributed computing nodes, thanks to 

the independent modules that each layer can scale 

horizontally. 

Monte Carlo Tree Search (MCTS) and parallelized 

Minimax algorithms are used in the processing layer to 

spread search calculations among several GPU and CPU 

clusters. This dramatically increases the system’s decision-

making efficiency by allowing it to examine millions of 

game positions at once.[23] To continuously update neural 

network weights via asynchronous gradient exchange 

mechanisms, the learning layer employs reinforcement 

learning agents that train through extensive self-play. In 

contrast to conventional serial learning techniques, this 

design reduces bottlenecks and speeds up model 

convergence. 

For real-world applicability, this system was deployed 

on a distributed GPU cluster using PyTorch Lightning and 

Ray RLlib frameworks. Stress testing showed that the 

architecture can support more than 5,000 concurrent self-

play simulations at an average decision latency of 0.21 

seconds per move. 

Comparative benchmarks against traditional single-node 

implementations revealed a 12× improvement in 

computational throughput and a 65% reduction in average 

training time. The architecture is further cloud-compatible, 

allowing the deployment of containerized models using 

Docker and Kubernetes for both research and production 

environments. The model natively supports real-time 

inference for online board game platforms, allowing adaptive 

gameplay experiences based on player performance.[23] 

Future scaling will include support for federated 

reinforcement learning, in which multiple systems train 

locally on different game variants while sharing model 

parameters without exchanging any sensitive data. 

 

3.7 Comparative analysis with current systems 

This section compares the proposed AI-in-board-games 

architecture with representative existing systems and 

approaches. We evaluate across several axes: core approach, 

learning paradigm, search strategy, compute requirements, 

adaptability to new games, real-time inference capability, 

and typical strengths and limitations. 

 

3.7.1 Qualitative comparison 

Classical search-based engines (e.g., traditional chess 

engines, like early Deep Blue or Stockfish variants) rely 

primarily on handcrafted evaluation functions combined 

with deep, deterministic search (alpha-beta/Minimax). These 

systems are high-speed at inference, excel when strong 

heuristics exist, but require extensive domain engineering 

and do not learn from self-play.[25] MCTS-based systems 

(e.g., early AlphaGo variants) are robust in large-branching-

factor games thanks to probabilistic rollouts and tree search, 

but can be computationally intensive at inference time.[23] 

Modern hybrid self-play systems (AlphaZero/Leela Zero 

family) that combine neural policy/value networks with 

MCTS achieve superior generalization and learning 

capability across multiple games at the cost of heavy training 

compute (large-scale GPUs/TPUs) and complex distributed 

training pipelines. 

The proposed architecture is hybrid in nature but focuses 

on modularity and deployment readiness: It combines 

efficient parallelized search with lightweight neural 
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policy/value models for fast inference and distributed self-

play training with asynchronous updates. Compared to 

purely search-based engines, the proposed system enhances 

adaptability and enables the discovery of novel strategies 

without human-crafted heuristics. Compared to AlphaZero-

like systems, this work aims to reduce operational cost by 

tuning the trade-off between neural compute and the search 

budget and by supporting federated and distributed training 

options that lower the centralized compute load. 

 

3.8 Experimental setup and evaluation 

3.8.1 Dataset characteristics 

Our evaluation dataset comprises over 1.2 million self-play 

game records generated during a six-week training period 

(January–March 2025) using the proposed AI framework. 

The dataset includes structured state-action-reward tuples (s, 

a, r) across three major board games: Chess, Go, and 

Checkers, each selected to represent increasing levels of 

game complexity and branching factors. 

For each game, multiple configurations were tested using 

different search depths, rollout limits, and exploration 

parameters to ensure diverse gameplay coverage. Each self-

play session was logged with metadata, including move 

sequence, policy probabilities, value estimations, and game 

outcomes (win, loss, draw).[25] 

The dataset also integrates evaluation logs from matches 

against benchmark engines such as Stockfish (for Chess), 

GnuGo (for Go), and Chinook (for Checkers). These match 

records were used to analyze the system’s adaptability and 

generalization capabilities. Data were preprocessed into 

normalized tensor representations for input to neural policy 

and value networks, while rewards were encoded on the [−1, 

1] scale corresponding to terminal game outcomes. 

Stockfish v16 (level 20), GnuGo v3.8, and Chinook v1.0 

were used as benchmark opponents. Experiments were 

conducted on NVIDIA RTX-series GPUs with multi-core 

Intel Xeon CPUs and 64 GB RAM per node. 

 

3.8.2 Evaluation metrics 

We employ a comprehensive set of metrics spanning both 

algorithmic performance and operational efficiency to assess 

the AI system’s effectiveness: 

1. Win Rate: Percentage of games won by the AI system 

against benchmark opponents across multiple difficulty 

levels. 

2. Macro-F1: Macro-F1 is computed over multi-class 

action (move) predictions, where each legal move is 

treated as a separate class, to evaluate balanced 

decision-making performance under imbalanced action 

distributions. 

3. Move Accuracy: Agreement rate of the model’s chosen 

move with the optimal move determined by a reference 

engine or expert dataset. 

4. Average Search Depth: The mean Number of moves 

explored in the decision tree before final action 

selection, indicating computational efficiency. 

5. Policy Confidence: Average softmax probability 

assigned to the executed move, reflecting decision 

certainty. 

6. Reward Convergence: Difference between predicted and 

actual rewards over training epochs, showing learning 

stability. 

7. Elo Rating Improvement: Relative skill increases over 

training time, computed using standard Elo ranking 

formulas. 

8. Processing Time per Move: Average latency (in 

seconds) required to generate a single move 

recommendation under standard inference conditions. 

These metrics collectively provide a balanced evaluation of 

the proposed system, covering accuracy, strategy 

consistency, efficiency, and generalization. Win rate and 

move accuracy capture playing strength, while convergence 

and latency metrics validate scalability and real-time 

viability for deployment in competitive gaming platforms. 

 

4. Results and analysis 

Various training experiments have been conducted on the 

Chess, Go, and Checkers environments using self-play and 

benchmark datasets to assess the performance of the 

proposed AI-based board game system.[25] Model training for 

50 epochs with a batch size of 128, a learning rate of 0.0005, 

and the Adam optimizer was conducted. Reinforcement 

learning agents were trained with policy and value networks 

integrated with MCTS. 

 

4.1 Model training and convergence 

As shown in Fig. 2, both the training loss and policy entropy 

decrease steadily over successive epochs, indicating stable 

learning behavior. The reduction in policy entropy reflects 

increasing confidence in action selection, while convergence 

of the loss curve after approximately 40 epochs confirms 

training stability. These results validate the effectiveness of 

integrating reinforcement learning with MCTS-based self-

play. 

 

4.2 Gameplay interface and workflow 

The system features a user-friendly gameplay interface for 

playing against AI at different difficulty levels. Real-time 

visualization, including board states, move probabilities, and 

predicted outcomes, enhances interactivity. The admin 

console can monitor AI performance metrics, log matches, 

and model opponents. 

 

4.3 Assessing gameplay performance 

The best win rate of the trained AI is 92.4% against 

traditional Minimax-based opponents and 87.1% against 

advanced heuristic engines. During human-level simulations, 

the model consistently generated optimal move sequences, 

demonstrating substantial strategic depth. Missteps were 

mainly observed in endgame positions with high branching  
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Fig. 2: Training and validation performance of the model across epochs, a) training and validation accuracy, b) training and 

validation loss, c) training loss and policy entropy. 

 

complexity. 

 

4.4 Comparative performance analysis 

Table 1 summarizes the performance comparison across 

different algorithms and systems. The proposed hybrid 

model achieved a win rate of 92.4 and a Macro-F1 score of 

0.863, outperforming all baselines. In addition, the proposed 

model recorded an average move latency of 0.38 seconds, 

showing real-time viability without compromising accuracy.  

Operational impact assessment during deployment testing 

further highlights the scalability of the proposed approach. 

The system reduced computational load by 58% through 

asynchronous self-play and enabled parallel execution of 

over 5,000 concurrent simulations.[10] Table 2 summarizes the 

key performance metrics. 

 

4.5 Ablation study 

An ablation study was conducted to assess the individual 

contributions of the three significant components of the 

proposed system: the policy network, the value network, and 

the Tree of Search (ToS), which represents the structured 

exploration of game states during decision evaluation. The 

results show that removing the MCTS-based search 

component leads to a noticeable decline in win rate, while 

excluding the value network reduces prediction stability and 

overall decision accuracy. These findings indicate that each

Table 1: Performance comparison across game AI methods. 

Method Win Rate Macro-F1 Elo Gain Latency 

Minimax (Depth 5) 0.782 0.731 +152 0.42 

MCTS (Baseline) 0.843 0.796 +224 0.68 

Policy Network Only 0.801 0.762 +187 0.21 

AlphaZero-Style Hybrid 0.911 0.845 +278 0.53 

Proposed Hybrid System 0.924 0.863 +316 0.38 
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element plays a complementary role in the decision-making 

process. The combined integration of neural policy learning 

and structured search enables the system to achieve a 

balanced trade-off between strategic accuracy, inference 

speed, and computational efficiency, thereby confirming the 

effectiveness of the proposed hybrid architecture for game-

playing tasks. Table 3 shows Ablation study results. 

 

Table 2: Operational Impact: Baseline vs. Proposed AI System. 

Metric Baseline Proposed 

System 

Improvement 

Training time 120 68 43% faster 

Decision latency 0.92 0.38 59% reduction 

Elo Rating 2350 2666 +13.4% 

Game 

simulations 

1200 5100 4.2× increase 

Resource 

utilization 

88% 64% 27% efficiency 

gain 

Table 3: Ablation study results. 

Configuration Win Rate Macro-F1 

Full model (Hybrid) 0.924 0.863 

Without MCTS 0.856 0.809 

Without value 

network 

0.874 0.818 

Policy only 0.801 0.762 

 

5. Discussion 

5.1 Technical achievements 

The proposed hybrid architecture integrates the best of 

search-based algorithms and deep reinforcement learning to 

enable high-accuracy decision-making in games such as 

chess and Go. It achieves strong adaptability with reduced 

inference time and facilitates learning through distributed 

self-play. The ablation study results shown in Table 3 include 

the complete model (hybrid), which achieves a high win rate 

compared to other configurations and also performs better 

across different parameters.  

 

5.2 Operational benefits 

The deployment results in faster move prediction, reduced 

computation overhead, and seamless scaling across multiple 

games. Automation of self-play minimizes human effort, 

while a modular, cloud-ready design supports real-time 

gameplay and adaptive difficulty adjustment. 

 

5.3 Challenges and limitations 

Key challenges include high computational requirements for 

large state spaces, maintaining real-time response across 

complex searches, and neural strategies that are only partially 

interpretable. Generalization and human-like creativity 

remain points of ongoing research. 

 

5.4 Future work 

Several promising research directions emerge: 

Transfer Learning: Extending trained models to new and 

unseen board games with minimal retraining effort. 

Federated Learning and Reinforcement learning: Enable 

decentralized self-play training across distributed systems, 

while preserving data privacy.  

Adaptive Opponent Modeling: Designing AI agents that can 

dynamically adapt strategies based on players’ behavior and 

skills. 

 

6. Conclusion  

The evolution of artificial intelligence in board games 

reflects the broader progress of AI research, transitioning 

from early rule-based systems and brute-force search to 

advanced self-learning architectures capable of strategic 

reasoning. Milestones such as Deep Blue, AlphaGo, and 

AlphaZero illustrate how board games have consistently 

served as benchmarks for measuring AI capabilities and 

innovation. This work contributes to this trajectory by 

proposing a hybrid search–learning architecture that 

integrates classical algorithms with deep reinforcement 

learning. The modular four-layer design enables adaptability 

across multiple board games while maintaining efficient 

inference and scalable training. Experimental results on 

Chess, Go, and Checkers demonstrate that the proposed 

system achieves strong performance in terms of win rate, Elo 

improvement, and operational efficiency. The technical 

strengths of the proposed approach include reduced 

computational overhead, real-time decision-making 

capability, and deployment readiness in distributed 

environments. By balancing neural computation with search 

depth, the system achieves a favorable trade-off between 

accuracy and latency. Beyond board games, the findings of 

this study have broader implications for AI research in 

strategic planning, optimization, and human-AI 

collaboration. Techniques developed for structured game 

environments can be extended to real-world applications, 

such as autonomous systems, logistics, and decision-support 

tools. Future research directions include improving model 

interpretability, further reducing computational cost, and 

extending the framework to imperfect-information and 

multi-agent environments. Continued exploration of hybrid 

and federated learning approaches may further enhance the 

scalability and practical applicability of AI systems inspired 

by board games. 
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