Not applicable
Use of artificial intelligence (AI)-assisted technology for manuscript preparation
The authors confirm that there was no use of artificial intelligence (AI)-assisted technology for assisting in the writing
or editing of the manuscript and no images were manipulated using AI.
References
[1] C. S. G. Sunil, Y. Zhang, C. Koparan, M. R. Ahmed, K. Howatt, X. Sun, Weed and crop species classification using
computer vision and deep learning technologies in greenhouse conditions, Journal of Agriculture and Food Research,
2022, 9, 100325, doi: 10.1016/j.jafr.2022.100325.
[2] B. Turan, I. Kadioglu, A. Basturk, B. Sin, A. Sadeghpour, Deep learning for image-based detection of weeds from
emergence to maturity in wheat fields, Smart Agricultural Technology, 2024, 09, 100552, doi:
10.1016/j.atech.2024.100552.
[3] A. Upadhyay, G. C. Sunil, Y. Zhang, C. Koparan, X. Sun, Development and evaluation of a machine vision and
deep learning-based smart sprayer system for site-specific weed management in row crops: An edge computing
approach, Computers and Electronics in Agriculture, 2024, 216, 108495, doi: 10.1016/j.jafr.2024.101331.
[4] S. Zahoor, S. A. Sof, Weed identification in crop field using CNN, Journal of University of Shanghai for Science
and Technology, 2021, 23, 15-21, doi: 10.3390/smartcities3030039.
[5] P. K. Reddy, R. A. Reddy, M. A. Reddy, K. Sai Teja, K. Rohith, K. Rahul, Detection of weeds by using machine
learning, Proceedings of the International Conference on Emerging Trends in Engineering and Technology, 2023, 882-
892.
[6] W. -H. Su, Advanced machine learning in point spectroscopy, RGB- and Hyperspectral-imaging for automatic
discriminations of crops and weeds: a review, Sensors, 2021, 21, 4707, doi: 0.3390/smartcities3030039.
[7] U. S. Umanaheswari, A. R. Arjun, M. D. Meganathan, Weed detection in farm crops using parallel image
processing, 2018 Conference on Information and Communication Technology (CICT), Jabalpur, India, 2018, 1-4, doi:
10.1109/INFOCOMTECH.2018.8722369.
[8] O. M. Olaniyi, E. Daniya, J. G. Kolo, J. A. Bala, A. E. Olanrewaju, A computer vision-based weed control system
for low-land rice precision farming, International Journal of Advances in Applied Sciences, 2020, 9, 51-61, doi:
10.11591/ijaas.v9.i1.pp51-61.
[9] M. D. Bah, A. Hafiane, R. Canals, Deep learning with unsupervised data labeling for weed detection in line crops
in UAV images, Remote Sensing, 2018, 10, 1690, doi: 10.3390/rs10111690.
[10] V. Partel, S. C. Kakaria, Y. Ampatzidis, Development and evaluation of a low-cost and smart technology for
precision weed management utilizing artificial intelligence, Computers and Electronics in Agriculture, 2019, 157, 339-
350, doi: 10.1016/j.compag.2018.12.048.
[11] Y. Wang, H. Liu, D. Wang, D. Liu, Image processing in fault identification for power equipment based on
improved super green algorithm, Computers & Electrical Engineering, 2020, 87, 106753, doi:
10.1016/j.compeleceng.2020.106753.
[12] J. Zhang, Weed recognition method based on hybrid CNN-transformer model, Frontiers in Computing and
Intelligent Systems, 2023, 4, 72-77, doi: 10.54097/fcis.v4i2.10209.
[13] L. Moldvai, P. Ákos Mesterházi, G. Teschner, A. Nyéki, Weed detection and classification with computer vision
using a limited image dataset, Computers and Electronics in Agriculture, 2024, 214, 108301, doi:
10.3390/app14114839.
[14] H. Jiang, C. Zhang, Y. Qiao, Z. Zhang, W. Zhang, C. Song, CNN feature-based graph convolutional network for
weed and crop recognition in smart farming, Computers and Electronics in Agriculture, 2020, 174, 105450, doi:
10.1016/j.compag.2020.105450.
[15] M. A. Haq, CNN based automated weed detection system using UAV imagery, Computer Systems Science and
Engineering, 2022, 42, 837-849, doi:
[16] P. K. Reddy, R. A. Reddy, M. A. Reddy, K. S. Teja, K. Rohith, K. Rahul, Detection of weeds by using machine
learning,” Proceedings of International Conference on Emerging Trends in Engineering, B. Raj et al., Eds., Springer,
2023, 882–892, doi: 10.2991/978-94-6463-252-1_89.
[17] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, R. Fergus, Regularization of neural networks using DropConnect,
Proceedings of the 30th International Conference on Machine Learning, 2013, 28, 1058-1066.
[18] B. Jabir, L. Rabhi, N. Falih, RNN- and CNN-based weed detection for crop improvement: An overview, Foods
and Raw Materials, 2021, 9, 387–396, doi: 10.21603/2308-4057-2021-2-387-396.h.
[19] Y. Tang, Deep learning using linear support vector machines, arXiv preprint arXiv:1306.0239, 2015.
[20] A. Bochkovskiy, C. -Y. Wang, H. -Y. M. Liao, YOLOv4: Optimal speed and accuracy of object detection, arXiv
preprint arXiv:2004.10934, 2020.
[21] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection,
Proceedings CVPR'16, 2016, 779-788, doi: 10.48550/arXiv.1506.02640.
[22] J. Redmon, A. Farhadi, YOLOv3: An incremental improvement, arXiv preprint arXiv:1804.02767, 2018.
[23] O. L. Garcia-Navarrete, A. Correa-Guimaraes, Application of convolutional neural networks in weed detection