There is no conflict of interest.
Supporting Information
Not applicable
Use of artificial intelligence (AI)-assisted technology for manuscript preparation
The authors confirm that there was no use of artificial intelligence (AI)-assisted technology for assisting in the writing
or editing of the manuscript and no images were manipulated using AI.
References
[1] N. Abed, R. Murugan, A. Deldari, S. Sankarannair, M. V. Ramesh, IoT and AI-driven solutions for human-wildlife
conflict: Advancing sustainable agriculture and biodiversity conservation, Smart Agricultural Technology, 2025, 10,
100829, doi: 10.1016/j.atech.2025.100829.
[2] M. Kommineni, M. Lavanya, V. H. Vardhan, G . J. Kumar, V. S. Shaik , T. Gouri Sankar, Agricultural farms utilizing
computer vision (ai) and machine learning techniques for animal detection and alarm systems, Journal of
Pharmaceutical Negative Results, 2022, 13, 3292–3300, doi: 10.47750/pnr.2022.13.S09.411.
[3] T. S. Delwar, S. Mukhopadhyay, A. Kumar, M. Singh, Y.-w. Lee, J.-Y. Ryu, A. S. M. S. Hosen, Real-time farm
surveillance using IoT and YOLOv8 for animal intrusion detection, Future Internet, 2025, 17, 70, doi:
10.3390/fi17020070.
[4] H. D. Patil, N. F. Ansari, Intrusion detection and repellent system for wild animals using artificial intelligence of
things, 2022 International Conference on Computing, Communication and Power Technology (IC3P), Visakhapatnam,
India, 2022, 291-296, doi: 10.1109/IC3P52835.2022.00068.
[5] J. Miao, D. Rajasekhar, S. Mishra, S. K. Nayak, R.Yadav, A microservice-based smart agriculture system to detect
animal intrusion at the edge, Future Internet, 2024, 16, 296, doi: 10.3390/fi16080296.
[6] K. Bazargani, T. Deemyad, Automation’s impact on agriculture: opportunities, challenges, and economic effects,
Robotics, 2024, 13, 33, doi: 10.3390/robotics13020033.
[7] A. J. Simla, R. Chakravarthi, L. M. Leo, Agricultural intrusion detection (AID) based on the internet of things and
deep learning with the enhanced lightweight M2M protocol, Soft Computing, 2023, doi: 10.1007/s00500-023-07935-
1.
[8] N. S. Sayem, S. Chowdhury, A. H. M. Osama Haque, Md. Rostom Ali, Md. Shahinur Alam, S. Ahamed, C. K.
Saha, IoT-based smart protection system to address agro-farm security challenges in Bangladesh, Smart Agricultural
Technology, 2023, 6, 100358, doi: 10.1016/j.atech.2023.100358.
[9] P. Balakrishnan, A. Anny Leema, G. Gnana Kiruba B, A. Gupta, R. Aryan, Deep-track: A real-time animal detection
and monitoring system for mitigating human-wildlife conflict in fringe areas, Journal for Nature Conservation, 2025,
88, 127063, 0.1016/j.jnc.2025.127063.
[10] M. A. K. Raiaan, N. M. Fahad, S. Chowdhury, D. Sutradhar, S. S. Mihad, M.M. Islam, IoT-based object-detection
system to safeguard endangered animals and bolster agricultural farm security, Future Internet, 2023, 15, 372, doi:
10.3390/fi15120372
[11] Moorthy V, Rukkumani V, Deep vision-based wildlife intrusion detection with colour distribution preserved
generative adversarial networks, Pattern Recognition, 2025, 161, 111272, doi: 10.1016/j.patcog.2024.111272.
[12] P. Muragod, Viswavardhan Reddy K, Animal intrusion detection using various deep learning models, 2022 IEEE
North Karnataka Subsection Flagship International Conference (NKCon), Vijaypur, India, 2022, 1-12, doi:
10.1109/NKCon56289.2022.10126526.
[13] T. Diwan, G. Anirudh, J. V. Tembhurne, Object detection using YOLO: challenges, architectural successors,
datasets and applications, Multimedia Tools and Applications, 2023, 82, 9243–9275, doi: 10.1007/s11042-022-13644-
y.
[14] B. Dave, M. Mori, A. Bathani, P. Goel, Wild animal detection using YOLOv8, Procedia Computer Science, 2023,
230, 100-111, doi: 10.1016/j.procs.2023.12.065.
[15] L. Chen, G. Li, S. Zhang, W. Mao, M. Zhang, YOLO-SAG: An improved wildlife object detection algorithm
based on YOLOv8n, Ecological Informatics, 2024, 83, 102791, doi: 10.1016/j.ecoinf.2024.102791.
[16] Z. Ma; Y. Dong, Y. Xia, D. Xu, F. Xu, F. Chen, Wildlife real-time detection in complex forest scenes based on
YOLOv5s deep learning network, Remote Sensing, 2024, 16, 1350, doi: 10.3390/rs16081350.
[17] R. Nayak, M. M. Behera, U. C. Pati and S. K. Das, Video-based real-time intrusion detection system using deep-
learning for smart city applications, 2019 IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS), Goa, India, 2019, 1-6, doi: 10.1109/ANTS47819.2019.9117960.
[18] S. Li, Z. Wang, Y. Lv, X. Liu, Improved YOLOv5s-based algorithm for foreign object intrusion detection on
overhead transmission lines, Energy Reports, 2024, 11, 6083-6093, doi: 10.1016/j.egyr.2024.05.061.