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Abstract

Zoos often present complex layouts that make navigation challenging for visitors, leading to missed exhibits and reduced
engagement. This study proposes a real-time, loT-enabled navigation and surveillance system designed for zoological parks,
with implementation at the Rajiv Gandhi Zoological Park (Katraj Zoo), Pune. The system integrates GPS data, OpenStreetMap
(OSM), and Leaflet.js to dynamically map visitor positions and generate optimal walking paths to animal enclosures. Each
enclosure is geotagged and selectable via a user interface, enabling real-time route plotting and recalculation based on
location updates. Unlike conventional navigation platforms, the proposed system incorporates informal pathways, thereby
improving spatial accuracy and usability. Field testing demonstrated improved visitor orientation and a 30-40% reduction in
travel time between exhibits, along with higher user satisfaction. The approach is scalable and adaptable to other

environments such as national parks, wildlife reserves, and botanical gardens.
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1. Introduction

Zoos serve as important educational and recreational centers,
offering visitors the opportunity to engage with wildlife in a
structured environment.'?l However, navigating these
complex landscapes often spread over several acres with
irregular layouts, natural obstacles, and intersecting trails
poses a significant challenge to visitors, especially first-
timers or tourists.l*l Most zoological parks still rely on static
printed maps or direction boards, which provide limited
interactivity, no real-time guidance, and often fail to reflect
the actual layout or informal paths within the premises.*
With the growing emphasis on smart tourism and digital
transformation, there is a strong push toward incorporating
location-aware  technologies and  user-personalized
experiences in public spaces like zoos, botanical gardens, and

national parks. In this context, combining Internet of Things
(IoT) technologies with open-source mapping platforms
opens new possibilities for enhancing spatial awareness and
navigation in such environments. In recent years, GPS and
wireless sensor networks have been widely adopted in
wildlife tracking and livestock management.[>*) However,
these solutions are generally designed for researchers and
conservationists rather than for visitor use. Existing tools like
Google Maps provide general navigation but are not
optimized for zoo settings, as they lack detailed information
about internal pathways, animal enclosures, and customized
routes. This gap between outdoor navigation systems and
specialized indoor or semi-outdoor environments like zoos
serves as the main motivation behind this study.

This study introduces the design, development, and
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evaluation of a mobile-friendly navigation and surveillance
system for Katraj Zoo in Pune, India. The system supports
real-time visitor tracking, shortest path guidance to animal
enclosures, and interactive routing using Leafletjs and
OpenStreetMap (OSM). It is scalable, functions offline, and
can be integrated with IoT sensors for animal activity
monitoring, visitor flow analysis, and emergency alerts. By
bridging the gap between traditional zoo maps and modern
geospatial technologies, the proposed system enhances
accessibility, user experience, and spatial awareness, while
laying the groundwork for future smart zoo infrastructures.

2. Literature review
Wildlife monitoring and intrusion detection have attracted
considerable research attention with the advancement of the
Internet of Things (IoT) and Artificial Intelligence (Al).
Numerous studies have focused on enhancing system
accuracy, energy efficiency, and real-time decision-making.
Kanthimathi et al.l proposed an animal intrusion detection
system using Raspberry Pi integrated with motion and
thermal sensors, where images were analyzed using the Fast
R-CNN model. This approach surpassed YOLO and SSD in
accuracy and reliability, providing timely alerts to mitigate
human—wildlife conflicts. Ayele et al.®! developed a dual-
radio IoT network combining Bluetooth Low Energy (BLE)
and LoRa for wildlife monitoring. BLE facilitated short-
range communication among collars, while LoRa enabled
long-range transmission to gateways, effectively doubling
network lifetime and improving energy efficiency—ideal for
vast wildlife habitats. Sharma and Muhuri”! examined the
role of LoORaWAN in remote IoT applications, demonstrating
its suitability for low-cost, long-range communication in
areas lacking cellular coverage. They identified wildlife
monitoring, precision agriculture, and border surveillance as
key use cases, though limited data rates remained a
challenge. Kumar et all'V leveraged Al-based image
recognition with camera traps and neural networks (CNN and
ANN) to identify species, detect poaching, and assess
ecosystem health, underscoring AI’s growing impact on
biodiversity conservation. Similarly, Tandale et al.l'
introduced a Smart Stick for trekkers using Raspberry Pi and
CNN to detect dangerous animals in real time, issuing alerts
through a buzzer. The device’s compact, affordable design
makes it practical for use in forested and trekking regions.
Elias et al.'? developed the “Where’s the Bear” (WTB)
system, an IoT and edge-cloud architecture that classifies
images at the edge to minimize bandwidth and storage
demands. Using TensorFlow and OpenCV, it accurately
identified animals such as bears, deer, and coyotes. Roy et
al.¥ proposed a Random Forest-based IoT framework for
real-time wildlife monitoring through motion sensors and
cameras, enabling high-accuracy species recognition and
behavioral analysis. Their user-friendly interface aids
conservationists in data-driven decision-making. McGrath
and Brenner!'¥presented a performance-optimized serverless
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computing platform on Microsoft Azure using Windows
containers, achieving higher throughput across con-currency
levels compared to AWS Lambda and Google Cloud
Functions. Their work demonstrates the scalability of
serverless architectures for IoT and edge computing in
wildlife monitoring. Finally, Aditya et al.l'"] designed a low-
power wildlife monitoring system using Raspberry Pi, LoRa
SX1278, and Efficient Det for real-time animal detection and
tracking, highlighting energy efficiency and field
applicability. The system integrates GPS (NEO-6M module)
for precise location mapping and LoRa for long-range,
energy-efficient communication. Unlike traditional short-
range protocols (Wi-Fi, Bluetooth), this architecture enables
sustainable deployments in remote areas. By combining
machine learning with low-power 10T, the system provides
scalable solutions for conservation and real-time wildlife
research.

Wijeyakulasuriya et al.'® proposed a machine learning
framework for predicting animal movement, incorporating
Random Forests, Neural Networks, and LSTMs. Their
experiments on ant colony data and gull migration showed
that ML and DL methods outperform traditional parametric
models like Stochastic Differential Equations (SDE) for
short-term predictions, while SDEs remain bet-ter for long-
term simulations. This study demonstrates that ML models
can generate realistic movement trajectories, aiding in
biodiversity conservation and disease spread modeling. Ojo
et all'l experimentally assessed LoRa technology for
wildlife monitoring in dense forest vegetation. Using PIR-
based IoT devices for animal detection and repelling, they
evaluated LoRa performance across 433 MHz and 868 MHz
bands. Results showed coverage up to 860 m in dense forests
and 2050 m in less dense areas, with significant variations in
RSSI, SNR, and packet delivery ratio. The study confirms
LoRa’s suitability for sustainable wildlife monitoring and
crop protection against ungulates, while also highlighting
deployment challenges in complex terrains. In [18],
Horbinski and Lorek developed interactive web maps from
historical cartography using Leaflet and GeoJSON, enabling

preindustrial environmental state reconstruction and
providing tools for conservation planning and spatial
analysis.

Shanmugasundaram et al.l'”! introduced an loT-based
animal tracking and monitoring system integrating GPS,
temperature, and PIR sensors for zoo and park applications.
The solution provided location, health, and intrusion alerts in
real time. Mahama Chedaod et al.*” designed a LoORaWAN-
based agricultural animal movement tracker combining
ESP32, GPS, and LoRa for real-time, low-power location
updates in rural environments lacking Wi-Fi or cellular infra-
structure. G. Mohantal?'! designed a GSM-GPS-based animal
tracking system combining physiological monitoring (e.g.,
heart rate, temperature) with location tracking. The solution
provided SMS-based alerts to wildlife officers, aiding in anti-
poaching efforts and health monitoring for endangered
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species such as elephants, tigers, and rhinos. Further,
Knowledge graph construction and machine-to-machine
(M2M) communication are directly related to efficient
information exchange between loT devices in such
systems. Pise et al.?2l emphasized dynamic knowledge
graph construction and clustering to enhance knowledge
management and decision-making in machine-to-machine
communication. The efficiency of hybrid stacked
ensembles of machine-learning classifiers for intelligent
IoT device classification-concepts that support the data-
driven analytics adopted in the present study.*

3. Methodology

The primary objective of this research is to develop an
intelligent, real-time navigation system tailored for
zoological parks, specifically addressing the needs of visitors
in large, complex environments like the Rajiv Gandhi
Zoological Park in Katraj, Pune. The methodology adopted
in this project combines hardware-based live location
tracking, a web-based user interface, and shortest path
routing logic based on a customized graph structure. This
system not only enhances the visitor experience by providing
accurate location and direction guidance but also aids in
crowd management and accessibility within the park. To
achieve real-time user localization, two parallel methods are
employed: one based on IoT GPS devices and the other using
the browser's Geolocation API. In the IoT-based approach, a
GPS module such as the NEO-6M or SIM80OL is integrated
with a microcontroller like the ESP32. This hardware setup
is powered by a lithium-ion battery and communicates over
Wi-Fi or GSM to transmit the user's coordinates to a central
server at regular intervals. In parallel, for smartphone users,
the application can access the browser’s geolocation service,
which uses a hybrid of GPS, Wi-Fi, and mobile tower
triangulation to provide accurate positioning. The collected
coordinates are used as the starting node for the navigation
algorithm. Fig. 1 shows the proposed model flow in the
research.

The software architecture consists of three layers: the
frontend interface developed using HTML, CSS, JavaScript,
and Leaflet.js; a backend server built using Flask or Node.js
to handle API requests; and the data layer, which includes a
manually defined graph structure representing walkable
paths within the zoo. Fig. 8 graph includes both formal paved
routes and informal but frequently used trails such as dirt or
red-dotted paths, which are identified using site surveys and
satellite imagery. Each node in the graph represents an
animal enclosure, intersection, or key point, and edges
denote navigable paths with associated distances. The edge
weights are calculated using the Haversine formula to ensure
accuracy in real-world distances. The application's
navigation uses the A* search algorithm to find the shortest
path from the user to an animal's enclosure. It combines
actual distance with a heuristic estimate to quickly find an
efficient route. The route is displayed on a Leaflet map as a
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series of coordinates, and the user is guided with animated
markers and labels. Fig. 2 represent steps the visitor
navigation and animal location system.

The system features an alphabetical dropdown menu for
all animal enclosures, which automatically zooms the map
and highlights the optimal path upon selection. Enclosures
are marked with clear, labeled icons for readability. The
system uses real-time location updates to recalculate the
route if the user deviates from the path. Fig. 3 shows the
shortest path computation and live navigation process
ensuring accurate navigation.
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Fig. 1: Proposed animal location tracking system.

This multi-modal approach, combining IoT tracking, web
mapping, and graph-based navigation, forms a robust and
scalable solution suitable for any large open-space
environment like zoos, parks, or campuses. The methodology
ensures that users can intuitively find their way while also
enabling authorities to manage foot traffic more effectively.
Fig. 4 shows layered system architecture of the proposed IoT-
enabled zoo navigation framework.
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Fig. 2: Visitor navigation and animal location system.

4. Results and discussion

The proposed real-time zoo navigation system was
implemented and tested at a simulated layout of the Rajiv
Gandhi Zoological Park (Katraj Zoo) using both live GPS
data and mock location inputs. The system was deployed in
a browser-based environment and accessed via mobile and
desktop platforms. Additionally, prototype IoT hardware,
built using an ESP32 microcontroller and NEO-6M GPS

module, was tested to validate the performance of hardware-
based tracking under various conditions within the zoo's
geography.

The real-time location of the user was accurately captured
using the browser's Geolocation API in most smartphone
devices with an average positional error of approximately 5—
8 meters shown in Table 1. In contrast, the IoT-based GPS
module demonstrated a slightly improved accuracy (3-5
meters) Table 2 in open areas but was prone to signal loss
under dense foliage or near animal enclosures built with
overhead shelters. This observation suggests that a hybrid
location tracking strategy combining browser-based
geolocation with optional IoT support offers a balanced
solution for diverse user groups.
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Fig. 3: Shortest path computation and live navigation process.

Table 1: Comparison of tracking methods.

Tracking Accuracy Limitations
Browser Geo API 5-8 Slight error in dense areas
IoT GPS Module 3-5 Signal loss under foliage/shelters
System Architecture
User Layer Mobile Web App L Browser (Chmme, || HTML5 Gelocation AP
(React) Safari, efc.)
"""""""""""""""""""
Application Animal Selector ||  Route Generator = Map Renderer
Layer Interface (Pathfinding Algorithm) (Leaflet js /Google MaAPI)
Backend & Firebase / REST API Route & Location
Data Layer Node.js Server / WebSockets Calculation
A
loT & Hardware [ Real-time Animal Data Sync to Cloud ]
Layer (Future Sap)

A

ESP32/LoRa Modules
on Animals

[ GPS / RFID Trackers ]

Fig. 4: System architecture of the proposed loT-enabled zoo navigation framework.
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Table 2: Visitor navigation efficiency.

Parameter Without  With Proposed  Improvement
System  System (%)

Avg. Time to 12 min 8 min 33%

Reach Encloser

No. of Missed 3 0 100%

Encloser

Avg. User 3.1 4.5 45%

Satisfaction Score

(1-5)

100%

Relattve Time (%)

Unassisted Navigation

With System

Fig. 5: Graphical representation of comparison of average
visitor navigation time.
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Route

Entrance-Reptile Entrance-Elephant

Fig. 6: Graphical representation of response time across
different enclosures.

Navigation performance was evaluated based on the
system’s ability to calculate and render the shortest path from
the user’s current position to a selected animal enclosure.
Fig. 6 represent the A* algorithm, applied to a pre-defined
graph representing zoo walkways (including both paved and
dotted red paths), consistently provided the most efficient
routes. Tests with different origin-destination pairs showed
that the system responded with optimal paths in under 100
milliseconds, which is satisfactory for real-time applications
shown in Fig. 5. Visualizations rendered using Leaflet.js
offered clear and intuitive path overlays. Paths were marked
with smooth polylines, and labelled markers for animal
enclosures provided additional clarity. The interface allowed
users to select any animal from a dropdown, upon which the
system smoothly zoomed into the relevant region and
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highlighted the route. Feedback from test users emphasized
the system's ease of use, particularly for first-time visitors
unfamiliar with the zoo's layout. One key result from testing
was the improved visitor orientation and reduced time spent
searching for specific enclosures. Informal observations
indicated that users using the navigation system reached
enclosures on average 30-40% faster compared to unassisted
navigation. Additionally, the ability to identify alternate, less
congested paths helped reduce crowding in central pathways.
A limitation encountered during testing was the challenge of
maintaining consistent GPS accuracy in forested or sheltered
zones. This occasionally led to off-path recalculations.
Future improvements may include integration with
Bluetooth beacons or Wi-Fi-based indoor localization to
address this shortcoming.

Fig. 7: GPS NEO-6M module connection with Arduino UNO
for real-time position.

Overall, the results confirm that the integration of loT-
based location tracking, graph-based routing, and interactive
map interfaces can significantly improve user experience and
operational management in zoological parks. The system
shows promise for broader deployment in similar
environments such as botanical gardens, heritage campuses,
and large amusement parks. In Fig. 7, we have used GPS
NEO-6 M module connection with Arduino UNO for real-
time position in Katraj Zoo Pune.

5. Conclusion and future scope

This work presents a scalable, cost-effective loT-enabled
navigation system for zoological parks that enhances visitor
experience through real-time GPS tracking, OpenStreetMap
geodata, and Leafletjs visualization, addressing the
limitations of static maps and generic navigation apps. Field-
tested at Katraj Zoo, the system proved its practicality by
improving navigation accuracy and user satisfaction, even on
informal or unmarked paths. Future improvements include
integrating IoT-based GPS or RFID modules for real-time
animal tracking, adaptive routing considering terrain and
crowd density, multilingual voice assistance, augmented
reality features, and a dynamic admin dashboard for zoo
authorities. The modular design also supports extensions to
educational content, live event updates, and interactive
quizzes, transforming visits into immersive learning
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Fig. 8: Snapshot of the output from the proposéd real-time zoo navigation and animal tracking system.

experiences. Beyond zoos, the framework can be adapted for
national parks, campuses, botanical gardens, and
archaeological sites, contributing to smart, sustainable, and
engaging tourism ecosystems. The system’s use of informal
or unmarked zoo paths often not included in standard
mapping tools significantly enhances the accuracy and utility
of the app in the zoo context. Additionally, the low hardware
footprint and browser-based deployment model make it
feasible for adoption in resource-constrained environments.
Beyond zoological environment, the proposed system
architecture and logic are highly adaptable for wide range of
smart tourism and spatial management applications. This can
be effectively used National parks with wildlife trails to
guide visitor to guide visitor along optimised and safe route.
Also, this can be used in large campus such as university or
corporate to felicitate outdoor navigation. This system can be
implemented to enhance visitor experience in botanical
gardens, eco-tourism resorts, and archaeological sites
featuring multiple open-air exhibits. This research lays the
foundation for further innovation in location-aware systems
for education, recreation, and sustainable tourism.
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