2025, 103, 1379–1397, doi: 10.1109/JPROC.2015.2444094.
[6] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, J. S. Plank, A survey of
neuromorphic computing and neural networks in hardware, Neural Computing and Applications, 2022, 34, 1–34, doi:
10.48550/arXiv.1705.06963.
[7] B. Rueckauer, C. Bybee, R. Goettsche, Y. Singh, J. Mishra, A. Wild, NxTF: An API and compiler for deep spiking
neural networks on Intel Loihi, ACM Journal on Emerging Technologies in Computing Systems, 2022, 18, 22, doi:
10.1145/3501770.
[8] Y. Song, X. Wang, M. Zhang, K. Chakrabarty, DFSynthesizer: A dataflow-based compilation framework for
neuromorphic systems, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, early
access, 2023.
[9] A. Balaji, A. Das, Y. Wu, K. Huynh, F.G. Dell’Anna. G.Indiveri, J. L. Krichmar, N. D. Dutt, S. Schaafsma, F.
Catthoor, Mapping spiking neural networks to neuromorphic hardware, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2020, 28, 76-86, doi: 10.1109/TVLSI.2019.2951493.
[10] C. Xiao, J. Chen, L. Wang, Optimal mapping of spiking neural network to neuromorphic hardware for edge-AI,
Sensors, 2022, 22, 7248, doi: 10.3390/s22197248.
[11] A. Gautam, P. Date, S. Kulkarni, R. Patton, T. Potok, NeuroCoreX: An open-source FPGA-based spiking neural
network emulator with on-chip learning, Neural and Evolutionary Computing, doi: 10.48550/arXiv.2506.14138.
[12] T. Hong, Y. Kang, J. Chung, InSight: An FPGA-based neuromorphic computing system for deep neural networks,
Journal of Low Power Electronics and Applications, 2020, 10, 36, doi: 10.3390/jlpea10040036.
[13] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N.Imam, C. Guo,
Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar,
D. S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface,
Science, 2014, 345, 668–673, doi: 10.1126/science.1254642.
[14] E. Neftci, H. Mostafa, F. Zenke, Surrogate gradient learning in spiking neural networks, IEEE Signal Processing
Magazine, 2019, 36, 61–63, doi: 10.1109/MSP.2019.2931595.
[15] J. S. Plank, G. S. Rose, M. E. Dean, C. D. Schuman and N. C. Cady, A unified hardware/software co-design
framework for neuromorphic computing devices and applications, 2017 IEEE International Conference on Rebooting
Computing (ICRC), Washington, DC, USA, 2017, 1-8, doi: 10.1109/ICRC.2017.8123655.
[16] D. Neil, S. -C. Liu, Minitaur, An event-driven FPGA-based spiking network accelerator, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2014, 22, 2621-2628, doi: 10.1109/TVLSI.2013.2294916.
[17] M. Jerry; P-Y. Chen, J. Zhang, P. Sharma, K.Ni, S. Yu, S. Datta, Ferroelectric FET analog synapse for acceleration
of deep neural network training,2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA,
2017, pp. 6.2.1-6.2.4, doi: 10.1109/IEDM.2017.8268338.
Publisher Note: The views, statements, and data in all publications solely belong to the authors and contributors. GR
Scholastic is not responsible for any injury resulting from the ideas, methods, or products mentioned. GR Scholastic
remains neutral regarding jurisdictional claims in published maps and institutional affiliations.
Open Access
This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which
permits the non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as appropriate credit to the original author(s) and the source is given by providing a link to the Creative Commons
License and changes need to be indicated if there are any. The images or other third-party material in this article are
included in the article's Creative Commons License, unless indicated otherwise in a credit line to the material. If
material is not included in the article's Creative Commons License and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this License, visit: https://creativecommons.org/licenses/by-nc/4.0/
© The Author(s) 2025