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1. Introduction 

Neuromorphic computing has emerged as a promising 

alternative to conventional von Neumann architectures 

because it closely mirrors the event-driven signaling and 

massive parallelism observed in biological neural systems. 

By integrating memory and computation, neuromorphic 

systems alleviate the memory–processing bottleneck 

inherent in traditional architectures. As modern applications 

increasingly demand ultra-low-latency inference and energy-

efficient intelligence at the edge, spiking neural networks 

(SNNs) and neuromorphic processors have attracted 

significant attention.[1,2] These systems operate using sparse, 

asynchronous spike-based communication, enabling 

computation that is fundamentally different from 

conventional deep learning models. 

Despite these advantages, translating high-level SNN 

models into executable low-level instructions compatible 

with specific neuromorphic hardware platforms remains a 

major challenge. This process, often referred to as 

neuromorphic assembly programming, requires careful 

handling of spike routing, hardware resource allocation, 

memory organization, on-chip timing constraints, and 

parallel execution patterns.[3,4] The challenge is exacerbated 

by the growing diversity of neuromorphic architectures, 

which differ in crossbar designs, communication fabrics, 

spike encoding schemes, and on-chip learning support, 

thereby limiting model portability across platforms.[5,6] 

Early efforts in neuromorphic compilation primarily 
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focused on direct mappings tailored to specific hardware 

platforms. For example, Rueckauer et al.[7] introduced NxTF, 

an API–compiler stack designed to efficiently deploy deep 

spiking neural networks (SNNs) on Intel’s Loihi processor 

by optimizing spike traffic and crossbar utilization. However, 

this approach is inherently tied to the Loihi architecture and 

does not generalize to other neuromorphic platforms.[7] Song 

et al.[8] later proposed a dataflow-driven compilation 

framework based on cluster partitioning and self-timed 

scheduling to support asynchronous, event-driven execution, 

which subsequently evolved into DFSynthesizer-a method 

that converts spike activity into hardware-executable 

dataflow instructions. 

Complementary research has explored improved spatial 

and temporal mapping strategies. SpiNeMap clusters 

synapses based on functional proximity to reduce routing 

overhead and latency,[9] while NeuMap extends this approach 

using greedy heuristics combined with meta-optimization 

techniques to enhance SNN placement across heterogeneous 

neuromorphic cores.[10] Additional studies have investigated 

modular design patterns, reusable building blocks, and 

FPGA-based spike-coding mechanisms to support flexible 

neuromorphic prototyping.[11,12] Collectively, these efforts 

establish a growing foundation for neuromorphic compilers 

and assembly-level SNN deployment. 

Despite these advancements, several limitations remain. 

Most existing frameworks are designed for a single hardware 

target, limiting interoperability as new neuromorphic 

processors emerge. Furthermore, many toolchains lack 

native support for adaptive dynamics, online learning, and 

synaptic plasticity-capabilities essential for next-generation 

neuromorphic intelligence. Current compilers also provide 

only partial automation, requiring manual intervention to 

resolve spike routing, concurrency, and resource contention 

issues. 

To overcome these challenges, this work proposes a 

hardware-agnostic neuromorphic compilation framework 

that automatically synthesizes spike-level instructions while 

supporting dynamic behaviors such as adaptation and 

plasticity. The proposed approach introduces a unified 

abstraction layer over heterogeneous architectures, enabling 

consistent SNN deployment across diverse hardware 

platforms. In addition, it integrates optimization strategies 

for routing, event scheduling, and workload partitioning, 

thereby improving performance portability and reducing 

developer effort. 

The primary contribution of this work is the extension of 

neuromorphic assembly programming beyond hardware-

specific solutions through an extensible and generalizable 

compilation pipeline. This contribution is significant as the 

neuromorphic ecosystem continues to diversify with 

emerging chips, reconfigurable fabrics, and hybrid analog–

digital substrates. A hardware-agnostic, automated, and 

adaptive compilation strategy is therefore essential to fully 

realize the potential of neuromorphic computing in real-

world intelligent systems. 

 
Fig. 1: Spiking neural network mapped onto neuromorphic 

computing cores. 

  

2. Literature review  

2.1 Overview: Why compiler and mapping research 

matters 

Neuromorphic systems operate under stringent, hardware-

specific constraints, including limited crossbar sizes, 

specialized spike-routing fabrics, restricted tile-to-tile 

bandwidth, and tightly coupled on-chip memory. These 

constraints make the automatic translation of high-level 

spiking neural network (SNN) models into efficient, 

executable low-level instructions a central bottleneck for 

adoption. Recent benchmark studies and surveys emphasize 

both the rapid growth of neuromorphic hardware platforms 

and the persistent fragmentation of software toolchains, 

highlighting limited interoperability across systems.[1,6] 

Consequently, compiler and mapping research has emerged 

as a critical enabler for scalable and deployable 

neuromorphic computing.  

 

2.2 Hardware-specific compilers and toolchains 

Early research efforts focused on platform-specific compilers 

that maximize performance on individual neuromorphic 

chips. NxTF exemplifies this approach by providing a Keras-

like interface and compiler stack tailored to Intel’s Loihi 

architecture. By exploiting Loihi’s neuron models, routing 

infrastructure, and weight-sharing mechanisms, NxTF 

achieves high utilization and competitive accuracy on its 

target hardware.[7,4] While such hardware-specific compilers 

deliver strong results, they embed architectural assumptions-

such as fixed crossbar dimensions, routing topologies, and 

neuron primitives-deep within their intermediate 

representations and optimization passes.[5] This tight 

coupling results in brittle toolchains that require significant 

redesign to support emerging neuromorphic substrates. 

 

2.3 Dataflow and cluster-based mapping frameworks 

To improve portability and analytical tractability, several 
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frameworks adopt dataflow-driven or cluster-based 

compilation strategies. DFSynthesizer introduces a pipeline 

that partitions SNN workloads into hardware-constrained 

clusters, models them as synchronous dataflow graphs, and 

schedules execution under bandwidth and latency 

constraints.[8] Complementary approaches such as SpiNeMap 

emphasize synaptic clustering based on functional proximity 

to reduce routing overhead and inter-core communication.[9] 

Although these methods improve mapping quality and 

enable performance analysis, they often rely on simplified 

abstractions such as homogeneous tiles or crossbars. As a 

result, they struggle to capture the diversity of modern 

neuromorphic fabrics, including irregular interconnects and 

mixed analog–digital architectures.[4,13] 

 

2.4 Spatial/temporal placement & optimization heuristics 

Placement-oriented tools such as NeuMap apply fast 

heuristic and metaheuristic strategies to reduce network-on-

chip latency and energy consumption by colocating neurons 

with high communication affinity.[10] These techniques are 

often combined with communication-aware partitioning to 

reduce spike traffic in large-scale deployments.[13] While 

heuristic placement scales well, it typically optimizes a 

narrow objective, such as communication locality. Important 

aspects—including timing jitter, asynchronous execution 

behavior, and online plasticity—are often excluded, limiting 

robustness in heterogeneous and adaptive neuromorphic 

systems.[14] 

 

2.5 Modular architectures and reusable design patterns 

Several studies propose modular and parameterized spike-

based building blocks that encapsulate common 

computations such as feature extraction, pooling, and 

normalization.[11] These abstractions simplify SNN 

composition and improve reasoning about verification and 

resource usage.  

Despite these advantages, modular patterns are not yet 

first-class citizens in neuromorphic compilers. Without a 

shared abstraction layer or pattern-aware intermediate 

representation, such constructs remain library-level 

conveniences rather than integrated compilation 

primitives.[15] 

 

2.6 FPGA implementations and prototyping platforms 

FPGA-based SNN implementations provide flexible 

platforms for algorithm–hardware co-design and support 

custom spike encodings and online learning 

mechanisms.[12,16] These platforms enable rapid 

experimentation prior to committing designs to silicon. 

However, FPGA architectures differ significantly from 

neuromorphic chips in communication models and timing 

semantics. Consequently, mapping strategies effective on 

FPGAs do not directly translate to specialized neuromorphic 

fabrics, and many FPGA-based efforts emphasize functional 

validation rather than full compilation automation.[16] 

2.7 Surveys, trends, and device-level progress (materials 

to chips) 

Comprehensive surveys and benchmark studies document 

strong progress in neuromorphic computing, spanning large-

scale digital processors, mixed-signal systems, and emerging 

synaptic devices such as ferroelectric FETs.[1,6,17] These 

works consistently emphasize the need for cross-layer 

toolchains that jointly account for device characteristics, 

learning rules, and system-level constraints.  

As the hardware landscape continues to diversify, existing 

toolchains—often built around rigid architectural 

abstractions—struggle to remain broadly applicable, 

widening the gap between device innovation and software 

support.[2,3] 

 

2.8 Comparative analysis & limitations across 

approaches 

Generality vs. performance trade-off: Platform-specific 

compilers (e.g., NxTF) achieve strong performance on a 

single chip but do not generalize; dataflow-based and 

clustering frameworks are more portable conceptually but 

still assume specific hardware abstractions (tiles, 

crossbars).[7] 

Support for adaptation & online learning: Few toolchains 

include built-in, first-class support for plasticity, continuous 

adaptation, or online learning; most focus on static mapping 

of inference workloads.[14]  

Automation depth: Several systems require manual 

tuning (e.g., cluster sizes, mapping parameters, scheduling 

tweaks). End-to-end automation that jointly optimizes 

accuracy, latency, energy, and hardware constraints remains 

limited.[9, 10]  

Hardware heterogeneity: The expanding variety of 

synaptic device technologies and interconnect topologies 

makes a one-size-fits-all compiler difficult; current tools 

either abstract away critical device details or hard-wire 

assumptions that break portability.[11,15] 

 

2.9 Identified research gap motivating the UNAL 

framework 

Lack of hardware-agnostic compilation layers that can 

expose a consistent intermediate representation while 

capturing significant device-specific constraints (timing 

jitter, analog non-idealities, interconnect differences). 

Existing compilers either over-specialize (high performance, 

low portability) or over-abstract (portability at the cost of 

fidelity). 

Insufficient native support for adaptive dynamics and 

online learning within compilation pipelines; existing 

toolchains primarily target static inference or require ad-hoc 

additions for plasticity. 

Partial automation of trade-offs: No widely used tool 

jointly and automatically optimizes mapping, scheduling, 

spike encoding, and learning-rule placement under multi-

objective constraints (accuracy, latency, energy, resource  
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Fig. 2: Workflow integrating the NxTF framework with the Intel Loihi architecture. 

 

usage). 

Fragmented design patterns and IRs: Absence of a 

composable, pattern-aware IR that allows reusable spike-

based modules to be mapped and optimized across platforms. 

These gaps motivate the UNAL (Unified Adaptive, 

Hardware-agnostic Neuromorphic Assembly Layer) 

framework: an extensible compilation pipeline that provides 

a portable IR capturing both functional SNN semantics and 

hardware constraints, integrates adaptive/online-learning 

constructs, and supports multi-objective automated 

optimization for heterogeneous neuromorphic substrates. 

 

4. Proposed framework  

4.1 Architectural Overview of UNAL 

The Unified Neuromorphic Assembly Layer (UNAL) is 

designed as a hardware-agnostic compilation and execution 

layer that bridges high-level SNN models (e.g., from 

PyTorch, BindsNET, Lava, Norse) with the low-level 

execution semantics of neuromorphic systems such as Loihi, 

SpiNNaker, and BrainScaleS. UNAL consists of four 

coordinated subsystems: 

Table 1: UNAL-IR specification. 

Field Description 

Opcode FIRE, ROUTE, STDP, SYNC, WAIT 

Neuron ID Logical neuron/group identifier 

Route Meta  Multicast ID, channel 

Timing Spike timestamp or window. 

Flags Learning, priority, async 

 

1. Model front-end interface 

• Accepts high-level SNN graphs defined in Python ML 

frameworks. 

• Normalizes neuron models (LIF, Izhikevich, adaptive 

LIF, multi-compartment models) into a unified 

computational graph. 

• Performs static analysis on spikes, weights, synaptic fan-

in/fan-out, and temporal constraints. 

 

2. UNAL Intermediate Representation (UNAL-IR) 

• A portable, spike-centric assembly language. 

• Represents spiking operations using a fixed, small 

instruction set. 

• Captures event timing, routing metadata, learning rules, 

and synchronization points independent of hardware 

architecture. 

• Designed so that different hardware back-ends can 

reinterpret the same IR in a platform-specific way. 

 

3. Optimization & mapping engine 

Transforms UNAL-IR into optimized blocks for a target 

hardware. 

Includes modules for: 

synaptic clustering 

spike-traffic minimization 

routing-aware placement 

event scheduling 

learning-rule compilation 

Integrates previously isolated methods (DFSynthesizer, 

SpiNeMap, NeuMap) into one pipeline. 

 

4. Hardware back-end translators 

Converts optimized UNAL-IR into chip-specific assembly: 

• Loihi microcode and crossbar routing tables 

• SpiNNaker routing entries and ARM-based event 

handlers 

• BrainScaleS analog neuron configuration parameters and 

pulse routing matrix 

https://gr-journals.com/about_gr.php


 

Volume 1 Issue 3 (December 2025)                                                                                                                                                                               Research article                                                                                                                      

       G R Scholastic                                                                                                                                                J. Smart Sens. Comput., 2025, 1, 25212 | 5 

• Performs hardware constraint validation: tile sizes, 

routing hop limits, analog compliance ranges, and event 

queues. 

 

4.2 UNAL instruction set specification 

UNAL provides a minimal, orthogonal instruction set based 

on spiking operations. 

Every instruction includes: 

opcode | neuron-id | synapse/route metadata | timing | flags. 

 

4.2.1 Instruction categories 

1. Spike Generation 

FIRE(n, t) – emit a spike from neuron n at time t. 

BURST(n, k, Δt) – generate k spikes with inter-spike interval 

Δt. 

 

2. Synaptic update & learning 

STDP(n_pre, n_post, Δw) – apply local update according to 

an STDP rule. 

APPLY_RULE(rule_id, params) – execute a hardware-

supported learning rule (e.g., Hebbian, reinforcement-based, 

triplet models). 

 

3. Routing & signal propagation 

ROUTE(src, dst, channel) – define a deterministic path for 

spike propagation. 

MULTICAST(src, group_id) – propagate spike to a neuron 

group using hardware multicast primitives (Loihi, 

SpiNNaker). 

 

4. Synchronization & flow control 

SYNC(cluster_id) – enforce synchronization barrier within a 

cluster. 

WAIT(Δt) – pause instruction execution for a given time 

window. 

EVENT(label) – mark an event trigger for conditional 

operations. 

 

5. Structural operations 

ALLOC(neuron_block) – allocate on-chip memory/registers. 

MAP(op_block, hw_tile) – assign a computation block to a 

hardware tile. 

 

This instruction set is intentionally compact to allow: 

easy compilation, predictable hardware interpretation, 

Extensibility for future biologically inspired features. 

 

4.3 UNAL mapping workflow 

UNAL uses a five-stage compilation and mapping pipeline, 

shown below. 

Stage 1 – Graph Parsing and Normalization 

Parse the SNN model and extract: 

neuron models 

synaptic matrices 

firing thresholds 

connectivity graph 

timing dependencies 

Convert high-level ML operations into spike-based 

operators. 

 

Stage 2 – UNAL-IR Generation 

For each layer or neuron group: 

generate FIRE, ROUTE, STDP, SYNC instructions 

create timing tables and spike windows 

Construct a dependency graph for scheduling. 

 

Stage 3 – Optimization Passes 

Cluster partitioning: group neurons with dense connectivity. 

Routing reduction: prune long routes, merge multicast paths. 

Latency balancing: reorder FIRE/WAIT cycles to minimize 

jitter. 

Resource fitting: adjust cluster sizes for tile/crossbar 

constraints. 

Learning rule placement: determine whether to execute 

learning on-chip or off-chip. 

 

Stage 4 – Hardware-Specific Transformation 

For each target system: 

Loihi Transform: 

Convert UNAL-IR to per-core microcode sequences. 

Generate routing tables and compartment configurations. 

 

SpiNNaker Transform: 

Interpret IR in ARM event-handler format. 

Map ROUTE and MULTICAST into SpiNNaker’s routing 

table entries. 

 

BrainScaleS Transform: 

Translate neuron parameters into analog calibration values. 

Convert timing instructions into pulse-generation schedules. 

 

Stage 5 – Deployment and Validation 

Measure: 

spike-traffic density 

routing congestion 

Energy-per-event 

on-chip firing rates 

Perform a simulation for feedback-driven remapping if 

constraints are violated. 

 

4.4 Algorithms and pseudocode 

Algorithm 1: UNAL Cluster Partitioning groups neurons in 

the SNN graph into hardware-feasible clusters by identifying 

densely connected communities using modularity analysis 

and recursively splitting clusters that exceed hardware limits. 

This preserves synaptic locality while respecting core-level 

constraints. 

 

Algorithm 2: Routing Optimization estimates inter-cluster 

spike traffic and routing congestion, then refines cluster  
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Fig. 3: Overview of the three core algorithms in the UNAL compilation pipeline. 

 
Algorithm 1: UNAL cluster partitioning. 

 
Algorithm 2: UNAL Routing Optimization. 
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Algorithm 3: Instruction Scheduling. 

 

communication paths to minimize overall routing cost, 

reducing spike latency and network congestion on 

neuromorphic hardware. 

Algorithm 3: Instruction Scheduling orders UNAL-IR 

instructions based on dependency analysis and inserts 

synchronization and wait operations to ensure correct 

execution timing and minimize jitter during spike 

processing. 

 

5. Case study  

5.1 Smart surveillance in smart cities using SNN 

deployment on neuromorphic hardware 

Innovative city surveillance systems require continuous 

pedestrian detection, crowd-flow analysis, and early 

identification of abnormal events, all with minimal latency. 

Conventional Deep Neural Networks (DNNs), such as 

MobileNet or YOLO, are effective in terms of accuracy but 

require substantial computational resources and high energy 

budgets. These characteristics make them unsuitable for 

distributed roadside units or smart poles, where both power 

and thermal headroom are limited. The core challenge 

addressed in this study is to achieve real-time pedestrian 

detection on such constrained edge nodes by restructuring the 

model as a Spiking Neural Network (SNN) and deploying it 

on Intel Loihi 2 neuromorphic hardware. The objective is to 

deliver millisecond-level responsiveness and sustained 

energy efficiency while operating within Loihi’s strict 

architectural boundaries. 

The SNN used in this work is represented as a 

Synchronous Dataflow Graph (SDFG), in which neuron 

populations serve as graph nodes and synaptic pathways 

define directed edges. To deploy the network efficiently, the 

graph is divided into clusters that can be placed on Loihi 

cores without exceeding hardware limits. Cluster formation 

is guided primarily by synaptic density. Neuron populations 

that share strong mutual connectivity, exhibit correlated 

firing behaviour, and operate within similar temporal 

windows are grouped. This approach preserves dense 

computational interactions within the same hardware region 

and reduces the spike traffic that must travel across Loihi’s 

mesh network. The formation process begins with the 

construction of a synaptic-weight adjacency matrix, from 

which pairwise density scores are computed. A modularity-

based community detection method (Louvain) is then applied 

to identify groups with high internal connection strength. 

Each candidate cluster is evaluated against Loihi’s 

constraints, including the maximum Number of neuron 

compartments, fan-in limits, and available synaptic memory. 

If a cluster exceeds any of these constraints, it is recursively 

divided using spectral bisection until a feasible configuration 

is obtained. 

Following initial clustering, the next step is to reduce the 

communication overhead caused by spikes travelling across 

clusters. For every cluster pair, the expected spike rate and 

routing distance are estimated, and a congestion cost is 

derived from these factors. High congestion indicates 

potential bottlenecks on Loihi’s routing fabric. To alleviate 

this, a refinement process based on the Kernighan–Lin 

partitioning method adjusts cluster boundaries to reduce 

global communication cost without violating core 

constraints. This refinement ensures that clusters that 

generate heavy mutual traffic remain proximate during 

placement and that routing paths remain balanced across the 

chip. 

Once the clusters are finalized, they must be mapped onto 

physical cores of the Loihi processor. The placement 

problem is combinatorial and sensitive to hardware 

constraints such as synaptic memory capacity, fan-in 

restrictions, and the cost of routing spikes across the mesh. 

To search this ample design space effectively, a metaheuristic 

based on a genetic algorithm is employed. Candidate 

placements are evaluated using an objective function that 

accounts for core utilization, overall routing cost, and 

penalties for any constraint violations. Through repeated 

evolution, crossover, and mutation, the search converges to a 

placement that minimizes communication overhead, 

balances load across cores, and satisfies all architectural 

requirements. 

To support this methodology, two visual representations 

may be included in the paper. The first is a synaptic-weight 

heatmap, derived from the adjacency matrix, which 

illustrates the dense connectivity regions that inform cluster 

formation. The second is a Loihi placement grid, where each 

core is coloured according to the cluster it hosts. This 

diagram reveals how closely interacting clusters are 

positioned adjacently and how routing distances are 

minimized. 

It presents a coherent clustering and placement process  
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Fig. 4: Adjacency matrix used for neural cluster formation. 

 

grounded in synaptic structure, communication analysis, and 

hardware-aware optimization, ensuring the deployment of 

the SNN on Loihi is both efficient and scientifically rigorous. 

 
Fig. 5: System flow diagram of SNN deployment. 

 

6. Conclusions  

Smart-city surveillance and urban sensing systems require 

real-time perception on power-constrained edge devices 

while maintaining low latency and predictable performance. 

This work addresses this challenge by adopting a 

neuromorphic computing approach and demonstrating the 

practical deployment of Spiking Neural Networks (SNNs) on 

Intel Loihi 2. A hardware-aware mapping workflow is 

presented that preserves dense synaptic structures, manages 

spike traffic between computational blocks, and respects 

core-level architectural constraints, enabling reliable timing 

behavior and efficient resource utilization for real-time 

workloads. Complementing this, the study introduces a 

hardware-agnostic, instruction-level neuromorphic compiler 

based on UNAL-IR, a compact intermediate representation 

paired with a unified optimization pipeline. The proposed 

framework achieves measurable improvements in latency, 

energy efficiency, and scalability while decoupling 

application design from specific neuromorphic hardware. 

Although the current static partitioning strategy limits 

adaptability to dynamic scene and traffic variations, future 

advances in dynamic graph restructuring, flexible 

compilation techniques, and tighter integration with 

emerging memory technologies are expected to enhance 

robustness. Overall, this work establishes a practical and 

maintainable foundation for SNN-based edge perception in 

next-generation smart-city platforms. 
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