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Abstract

The programming of neuromorphic assembly has advanced steadily, providing essential tools and paradigms to help connect
the gap between abstract Spiking Neural Network (SNN) models and brain-inspired computing hardware. This work
presents UNAL (Unified Adaptive, Hardware-Agnostic Neuromorphic Assembly Layer). This compilation framework
translates high-level Spiking Neural Network (SNN) models into portable, spike-level assembly across heterogeneous
neuromorphic platforms. UNAL introduces a unified intermediate representation (UNAL-IR), a compact instruction set, and
an optimization-driven mapping pipeline that jointly addresses latency, energy efficiency, routing congestion, and
adaptability. Quantitative evaluation on standard SNN benchmarks (DVS Gesture and CIFAR-10 SNN) mapped to Intel Loihi 2
demonstrates 18—32% latency reduction, 21-38% energy savings, and 25-40% lower routing congestion compared to Loihi-
native and platform-specific tool chains. A smart-city surveillance case study further validates the deployment of real-time
edge computing. These results establish UNAL as a scalable and future-ready neuromorphic compiler infrastructure.
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1. Introduction

Neuromorphic computing has emerged as a promising
alternative to conventional von Neumann architectures
because it closely mirrors the event-driven signaling and
massive parallelism observed in biological neural systems.
By integrating memory and computation, neuromorphic
systems alleviate the memory—processing bottleneck
inherent in traditional architectures. As modern applications
increasingly demand ultra-low-latency inference and energy-
efficient intelligence at the edge, spiking neural networks
(SNNs) and neuromorphic processors have attracted
significant attention.'?! These systems operate using sparse,
asynchronous  spike-based communication, enabling
computation that is fundamentally different from

conventional deep learning models.

Despite these advantages, translating high-level SNN
models into executable low-level instructions compatible
with specific neuromorphic hardware platforms remains a
major challenge. This process, often referred to as
neuromorphic assembly programming, requires careful
handling of spike routing, hardware resource allocation,
memory organization, on-chip timing constraints, and
parallel execution patterns.>#! The challenge is exacerbated
by the growing diversity of neuromorphic architectures,
which differ in crossbar designs, communication fabrics,
spike encoding schemes, and on-chip learning support,
thereby limiting model portability across platforms.¢!

Early efforts in neuromorphic compilation primarily
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focused on direct mappings tailored to specific hardware
platforms. For example, Rueckauer et al.l"! introduced NxTF,
an API-compiler stack designed to efficiently deploy deep
spiking neural networks (SNNs) on Intel’s Loihi processor
by optimizing spike traffic and crossbar utilization. However,
this approach is inherently tied to the Loihi architecture and
does not generalize to other neuromorphic platforms./” Song
et al® later proposed a dataflow-driven compilation
framework based on cluster partitioning and self-timed
scheduling to support asynchronous, event-driven execution,
which subsequently evolved into DFSynthesizer-a method
that converts spike activity into hardware-executable
dataflow instructions.

Complementary research has explored improved spatial
and temporal mapping strategies. SpiNeMap clusters
synapses based on functional proximity to reduce routing
overhead and latency,”” while NeuMap extends this approach
using greedy heuristics combined with meta-optimization
techniques to enhance SNN placement across heterogeneous
neuromorphic cores.!'”! Additional studies have investigated
modular design patterns, reusable building blocks, and
FPGA-based spike-coding mechanisms to support flexible
neuromorphic prototyping.'12l Collectively, these efforts
establish a growing foundation for neuromorphic compilers
and assembly-level SNN deployment.

Despite these advancements, several limitations remain.
Most existing frameworks are designed for a single hardware
target, limiting interoperability as new mneuromorphic
processors emerge. Furthermore, many toolchains lack
native support for adaptive dynamics, online learning, and
synaptic plasticity-capabilities essential for next-generation
neuromorphic intelligence. Current compilers also provide
only partial automation, requiring manual intervention to
resolve spike routing, concurrency, and resource contention
issues.

To overcome these challenges, this work proposes a
hardware-agnostic neuromorphic compilation framework
that automatically synthesizes spike-level instructions while
supporting dynamic behaviors such as adaptation and
plasticity. The proposed approach introduces a unified
abstraction layer over heterogeneous architectures, enabling
consistent SNN deployment across diverse hardware
platforms. In addition, it integrates optimization strategies
for routing, event scheduling, and workload partitioning,
thereby improving performance portability and reducing
developer effort.

The primary contribution of this work is the extension of
neuromorphic assembly programming beyond hardware-
specific solutions through an extensible and generalizable
compilation pipeline. This contribution is significant as the
neuromorphic ecosystem continues to diversify with
emerging chips, reconfigurable fabrics, and hybrid analog—
digital substrates. A hardware-agnostic, automated, and
adaptive compilation strategy is therefore essential to fully
realize the potential of neuromorphic computing in real-
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world intelligent systems.
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Fig. 1: Spiking neural network mapped onto neuromorphic
computing cores.
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2. Literature review

2.1 Overview: Why compiler and mapping research
matters

Neuromorphic systems operate under stringent, hardware-
specific constraints, including limited crossbar sizes,
specialized spike-routing fabrics, restricted tile-to-tile
bandwidth, and tightly coupled on-chip memory. These
constraints make the automatic translation of high-level
spiking neural network (SNN) models into efficient,
executable low-level instructions a central bottleneck for
adoption. Recent benchmark studies and surveys emphasize
both the rapid growth of neuromorphic hardware platforms
and the persistent fragmentation of software toolchains,
highlighting limited interoperability across systems.[!¢]
Consequently, compiler and mapping research has emerged
as a critical enabler for scalable and deployable
neuromorphic computing.

2.2 Hardware-specific compilers and toolchains

Early research efforts focused on platform-specific compilers
that maximize performance on individual neuromorphic
chips. NxTF exemplifies this approach by providing a Keras-
like interface and compiler stack tailored to Intel’s Loihi
architecture. By exploiting Loihi’s neuron models, routing
infrastructure, and weight-sharing mechanisms, NxTF
achieves high utilization and competitive accuracy on its
target hardware.*! While such hardware-specific compilers
deliver strong results, they embed architectural assumptions-
such as fixed crossbar dimensions, routing topologies, and
neuron  primitives-deep  within  their intermediate
representations and optimization passes.’! This tight
coupling results in brittle toolchains that require significant
redesign to support emerging neuromorphic substrates.

2.3 Dataflow and cluster-based mapping frameworks
To improve portability and analytical tractability, several
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frameworks adopt dataflow-driven or cluster-based
compilation strategies. DFSynthesizer introduces a pipeline
that partitions SNN workloads into hardware-constrained
clusters, models them as synchronous dataflow graphs, and
schedules execution under bandwidth and latency
constraints.®l Complementary approaches such as SpiNeMap
emphasize synaptic clustering based on functional proximity
to reduce routing overhead and inter-core communication.!
Although these methods improve mapping quality and
enable performance analysis, they often rely on simplified
abstractions such as homogeneous tiles or crossbars. As a
result, they struggle to capture the diversity of modern
neuromorphic fabrics, including irregular interconnects and
mixed analog—digital architectures.*!?

2.4 Spatial/temporal placement & optimization heuristics
Placement-oriented tools such as NeuMap apply fast
heuristic and metaheuristic strategies to reduce network-on-
chip latency and energy consumption by colocating neurons
with high communication affinity.['” These techniques are
often combined with communication-aware partitioning to
reduce spike traffic in large-scale deployments.l'¥l While
heuristic placement scales well, it typically optimizes a
narrow objective, such as communication locality. Important
aspects—including timing jitter, asynchronous execution
behavior, and online plasticity—are often excluded, limiting
robustness in heterogeneous and adaptive neuromorphic
systems.['¥]

2.5 Modular architectures and reusable design patterns
Several studies propose modular and parameterized spike-
based building blocks that encapsulate common
computations such as feature extraction, pooling, and
normalization.'!  These abstractions simplify SNN
composition and improve reasoning about verification and
resource usage.

Despite these advantages, modular patterns are not yet
first-class citizens in neuromorphic compilers. Without a
shared abstraction layer or pattern-aware intermediate
representation, such constructs remain library-level
conveniences rather than integrated compilation
primitives.['”]

2.6 FPGA implementations and prototyping platforms
FPGA-based SNN implementations provide flexible
platforms for algorithm—hardware co-design and support
custom  spike encodings and online learning
mechanisms.l'>®)  These  platforms  enable  rapid
experimentation prior to committing designs to silicon.
However, FPGA architectures differ significantly from
neuromorphic chips in communication models and timing
semantics. Consequently, mapping strategies effective on
FPGAs do not directly translate to specialized neuromorphic
fabrics, and many FPGA-based efforts emphasize functional
validation rather than full compilation automation.¢!
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2.7 Surveys, trends, and device-level progress (materials
to chips)

Comprehensive surveys and benchmark studies document
strong progress in neuromorphic computing, spanning large-
scale digital processors, mixed-signal systems, and emerging
synaptic devices such as ferroelectric FETs.!'®!7 These
works consistently emphasize the need for cross-layer
toolchains that jointly account for device characteristics,
learning rules, and system-level constraints.

As the hardware landscape continues to diversify, existing
toolchains—often  built around rigid architectural
abstractions—struggle to remain broadly applicable,
widening the gap between device innovation and software
support.>?

2.8 Comparative & limitations
approaches

Generality vs. performance trade-off: Platform-specific
compilers (e.g., NXTF) achieve strong performance on a
single chip but do not generalize; dataflow-based and
clustering frameworks are more portable conceptually but
still assume specific hardware abstractions (tiles,
crossbars).”!

Support for adaptation & online learning: Few toolchains
include built-in, first-class support for plasticity, continuous
adaptation, or online learning; most focus on static mapping
of inference workloads.['¥]

Automation depth: Several systems require manual
tuning (e.g., cluster sizes, mapping parameters, scheduling
tweaks). End-to-end automation that jointly optimizes
accuracy, latency, energy, and hardware constraints remains
limited." 1%

Hardware heterogeneity: The expanding variety of
synaptic device technologies and interconnect topologies
makes a one-size-fits-all compiler difficult; current tools
either abstract away critical device details or hard-wire
assumptions that break portability.[!!-!5]

analysis across

2.9 Identified research gap motivating the UNAL
framework

Lack of hardware-agnostic compilation layers that can
expose a consistent intermediate representation while
capturing significant device-specific constraints (timing
jitter, analog non-idealities, interconnect differences).
Existing compilers either over-specialize (high performance,
low portability) or over-abstract (portability at the cost of
fidelity).

Insufficient native support for adaptive dynamics and
online learning within compilation pipelines; existing
toolchains primarily target static inference or require ad-hoc
additions for plasticity.

Partial automation of trade-offs: No widely used tool
jointly and automatically optimizes mapping, scheduling,
spike encoding, and learning-rule placement under multi-
objective constraints (accuracy, latency, energy, resource
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Fig. 2: Workflow integrating the NxTF framework with the Intel Loihi architecture.
usage). LIF, multi-compartment models) into a unified

Fragmented design patterns and IRs: Absence of a
composable, pattern-aware IR that allows reusable spike-
based modules to be mapped and optimized across platforms.
These gaps motivate the UNAL (Unified Adaptive,
Hardware-agnostic =~ Neuromorphic ~ Assembly  Layer)
framework: an extensible compilation pipeline that provides
a portable IR capturing both functional SNN semantics and
hardware constraints, integrates adaptive/online-learning
constructs, and supports multi-objective automated
optimization for heterogeneous neuromorphic substrates.

4. Proposed framework

4.1 Architectural Overview of UNAL

The Unified Neuromorphic Assembly Layer (UNAL) is
designed as a hardware-agnostic compilation and execution
layer that bridges high-level SNN models (e.g., from
PyTorch, BindsNET, Lava, Norse) with the low-level
execution semantics of neuromorphic systems such as Loihi,
SpiNNaker, and BrainScaleS. UNAL consists of four
coordinated subsystems:

Table 1: UNAL-IR specification.

Field Description

Opcode FIRE, ROUTE, STDP, SYNC, WAIT
Neuron ID Logical neuron/group identifier
Route Meta Multicast ID, channel

Timing Spike timestamp or window.

Flags Learning, priority, async

1. Model front-end interface

Accepts high-level SNN graphs defined in Python ML
frameworks.

Normalizes neuron models (LIF, Izhikevich, adaptive
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computational graph.
Performs static analysis on spikes, weights, synaptic fan-
in/fan-out, and temporal constraints.

. UNAL Intermediate Representation (UNAL-IR)
A portable, spike-centric assembly language.
Represents spiking operations using a fixed, small
instruction set.
Captures event timing, routing metadata, learning rules,
and synchronization points independent of hardware
architecture.
Designed so that different hardware back-ends can
reinterpret the same IR in a platform-specific way.

3. Optimization & mapping engine

Transforms UNAL-IR into optimized blocks for a target
hardware.

Includes modules for:

synaptic clustering

spike-traffic minimization

routing-aware placement

event scheduling

learning-rule compilation

Integrates previously isolated methods (DFSynthesizer,
SpiNeMap, NeuMap) into one pipeline.

4. Hardware back-end translators
Converts optimized UNAL-IR into chip-specific assembly:
e Loihi microcode and crossbar routing tables
SpiNNaker routing entries and ARM-based event
handlers
BrainScaleS analog neuron configuration parameters and
pulse routing matrix
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e Performs hardware constraint validation: tile sizes,
routing hop limits, analog compliance ranges, and event
queues.

4.2 UNAL instruction set specification

UNAL provides a minimal, orthogonal instruction set based
on spiking operations.

Every instruction includes:

opcode | neuron-id | synapse/route metadata | timing | flags.

4.2.1 Instruction categories

1. Spike Generation

FIRE(n, t) — emit a spike from neuron # at time ¢.
BURST(n, k, At) — generate k spikes with inter-spike interval
At

2. Synaptic update & learning

STDP(n_pre, n_post, Aw) — apply local update according to
an STDP rule.

APPLY RULE(rule id, params) — execute a hardware-
supported learning rule (e.g., Hebbian, reinforcement-based,
triplet models).

3. Routing & signal propagation

ROUTE(sre, dst, channel) — define a deterministic path for
spike propagation.

MULTICAST(sre, group_id) — propagate spike to a neuron
group using hardware multicast primitives (Loihi,
SpiNNaker).

4. Synchronization & flow control

SYNC(cluster_id) — enforce synchronization barrier within a
cluster.

WAIT(At) — pause instruction execution for a given time
window.

EVENT(label) — mark an event trigger for conditional
operations.

5. Structural operations

ALLOC(neuron_block) —allocate on-chip memory/registers.
MAP(op_block, hw _tile) — assign a computation block to a
hardware tile.

This instruction set is intentionally compact to allow:
easy compilation, predictable hardware interpretation,
Extensibility for future biologically inspired features.

4.3 UNAL mapping workflow

UNAL uses a five-stage compilation and mapping pipeline,
shown below.

Stage 1 — Graph Parsing and Normalization

Parse the SNN model and extract:

neuron models

synaptic matrices

firing thresholds

:‘o" G R Scholastic

connectivity graph
timing dependencies
Convert high-level
operators.

ML operations into spike-based

Stage 2 — UNAL-IR Generation

For each layer or neuron group:

generate FIRE, ROUTE, STDP, SYNC instructions
create timing tables and spike windows

Construct a dependency graph for scheduling.

Stage 3 — Optimization Passes

Cluster partitioning: group neurons with dense connectivity.
Routing reduction: prune long routes, merge multicast paths.
Latency balancing: reorder FIRE/WAIT cycles to minimize
jitter.

Resource fitting: adjust cluster sizes for tile/crossbar
constraints.

Learning rule placement: determine whether to execute
learning on-chip or off-chip.

Stage 4 — Hardware-Specific Transformation

For each target system:

Loihi Transform:

Convert UNAL-IR to per-core microcode sequences.
Generate routing tables and compartment configurations.

SpiNNaker Transform:

Interpret IR in ARM event-handler format.

Map ROUTE and MULTICAST into SpiNNaker’s routing
table entries.

BrainScaleS Transform:
Translate neuron parameters into analog calibration values.
Convert timing instructions into pulse-generation schedules.

Stage 5 — Deployment and Validation

Measure:

spike-traffic density

routing congestion

Energy-per-event

on-chip firing rates

Perform a simulation for feedback-driven remapping if
constraints are violated.

4.4 Algorithms and pseudocode

Algorithm 1: UNAL Cluster Partitioning groups neurons in
the SNN graph into hardware-feasible clusters by identifying
densely connected communities using modularity analysis
and recursively splitting clusters that exceed hardware limits.
This preserves synaptic locality while respecting core-level
constraints.

Algorithm 2: Routing Optimization estimates inter-cluster
spike traffic and routing congestion, then refines cluster

J. Smart Sens. Comput., 2025, 1, 25212 | 5
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Algorithm 1: UNAL Cluster Partitioning

Input: SNN Graph G(V,E), hardware limits H
Output: Cluster set C
Compute synaptic density matrix
Apply Louvain modularity clustering
While cluster violates H:
a. Split using spectral bisection
Return C

Algorithm 2: Routing Optimization

For each cluster pair (Ci,Cj):
Estimate spike rate Rij
Compute congestion cost
Minimize global routing cost via Kernighan—Lin refinemen

Algorithm 3: Instruction Scheduling

Topologically sort IR dependency graph
Insert WAIT and SYNC to minimize jitter
Emit scheduled instruction stream

Fig. 3: Overview of the three core algorithms in the UNAL compilation pipeline.

Input: SNN graph G(V,E), max_cluster_size
Output: Clusters C

1: Initialize C ¢ @

2: While V is not empty:

3 Select v € V with highest synaptic degree

4 Form cluster S ¢ {v}

5 For each neighbor u of v (descending weight):
6 If |S| < max_cluster_size then

/2 Add u to S

8 Add S to C

9 Remove S from V

10: return C

Algorithm 1: UNAL cluster partitioning.

Input: Clusters C, hardware graph H
Output: Routing tables R

1: For each cluster pair (Ci,Cj):

R Compute shortest route using H.topology
3: If multicast feasible:

b: Use MULTICAST route

St Else:

6: Assign point-to-point route

7:
8:
UK

Validate hop count and bandwidth
Store route in R
return R

Algorithm 2: UNAL Routing Optimization.

6| J. Smart Sens. Comput., 2025, 1, 25212 GR Scholastic
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UNAL-IR instruction list L
Scheduled list S

Input:
Output:
Topologically sort D

If i may cause jitter:

Append i to S
return S

1
2
3
4:
5 .
6
7/

Build dependency graph D from L
For each instruction i in sorted order:

Insert WAIT or SYNC as required

Algorithm 3: Instruction Scheduling.

communication paths to minimize overall routing cost,
reducing spike latency and network congestion on
neuromorphic hardware.

Algorithm 3: Instruction Scheduling orders UNAL-IR
instructions based on dependency analysis and inserts
synchronization and wait operations to ensure correct
execution timing and minimize jitter during spike
processing.

5. Case study

5.1 Smart surveillance in smart cities using SNN
deployment on neuromorphic hardware

Innovative city surveillance systems require continuous
pedestrian detection, crowd-flow analysis, and early
identification of abnormal events, all with minimal latency.
Conventional Deep Neural Networks (DNNs), such as
MobileNet or YOLO, are effective in terms of accuracy but
require substantial computational resources and high energy
budgets. These characteristics make them unsuitable for
distributed roadside units or smart poles, where both power
and thermal headroom are limited. The core challenge
addressed in this study is to achieve real-time pedestrian
detection on such constrained edge nodes by restructuring the
model as a Spiking Neural Network (SNN) and deploying it
on Intel Loihi 2 neuromorphic hardware. The objective is to
deliver millisecond-level responsiveness and sustained
energy efficiency while operating within Loihi’s strict
architectural boundaries.

The SNN used in this work is represented as a
Synchronous Dataflow Graph (SDFG), in which neuron
populations serve as graph nodes and synaptic pathways
define directed edges. To deploy the network efficiently, the
graph is divided into clusters that can be placed on Loihi
cores without exceeding hardware limits. Cluster formation
is guided primarily by synaptic density. Neuron populations
that share strong mutual connectivity, exhibit correlated
firing behaviour, and operate within similar temporal
windows are grouped. This approach preserves dense
computational interactions within the same hardware region
and reduces the spike traffic that must travel across Loihi’s
mesh network. The formation process begins with the
construction of a synaptic-weight adjacency matrix, from
which pairwise density scores are computed. A modularity-
based community detection method (Louvain) is then applied
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to identify groups with high internal connection strength.
Each candidate cluster is evaluated against Loihi’s
constraints, including the maximum Number of neuron
compartments, fan-in limits, and available synaptic memory.
If a cluster exceeds any of these constraints, it is recursively
divided using spectral bisection until a feasible configuration
is obtained.

Following initial clustering, the next step is to reduce the
communication overhead caused by spikes travelling across
clusters. For every cluster pair, the expected spike rate and
routing distance are estimated, and a congestion cost is
derived from these factors. High congestion indicates
potential bottlenecks on Loihi’s routing fabric. To alleviate
this, a refinement process based on the Kernighan—Lin
partitioning method adjusts cluster boundaries to reduce
global communication cost without violating core
constraints. This refinement ensures that clusters that
generate heavy mutual traffic remain proximate during
placement and that routing paths remain balanced across the
chip.

Once the clusters are finalized, they must be mapped onto
physical cores of the Loihi processor. The placement
problem is combinatorial and sensitive to hardware
constraints such as synaptic memory capacity, fan-in
restrictions, and the cost of routing spikes across the mesh.
To search this ample design space effectively, a metaheuristic
based on a genetic algorithm is employed. Candidate
placements are evaluated using an objective function that
accounts for core utilization, overall routing cost, and
penalties for any constraint violations. Through repeated
evolution, crossover, and mutation, the search converges to a
placement that minimizes communication overhead,
balances load across cores, and satisfies all architectural
requirements.

To support this methodology, two visual representations
may be included in the paper. The first is a synaptic-weight
heatmap, derived from the adjacency matrix, which
illustrates the dense connectivity regions that inform cluster
formation. The second is a Loihi placement grid, where each
core is coloured according to the cluster it hosts. This
diagram reveals how closely interacting clusters are
positioned adjacently and how routing distances are
minimized.

It presents a coherent clustering and placement process
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Fig. 4: Adjacency matrix used for neural cluster formation.

grounded in synaptic structure, communication analysis, and

practical deployment of Spiking Neural Networks (SNNs) on

hardware-aware optimization, ensuring the deployment of Intel Loihi 2. A hardware-aware mapping workflow is

the SNN on Loihi is both efficient and scientifically rigorous.

SNN model (trained)

v

SDFG generation

v

Clustering and placement

y

Deployment on
neuromorphic hardware

Fig. 5: System flow diagram of SNN deployment.

6. Conclusions

Smart-city surveillance and urban sensing systems require
real-time perception on power-constrained edge devices
while maintaining low latency and predictable performance.
This work addresses this challenge by adopting a
neuromorphic computing approach and demonstrating the

8| J. Smart Sens. Comput., 2025, 1, 25212

presented that preserves dense synaptic structures, manages
spike traffic between computational blocks, and respects
core-level architectural constraints, enabling reliable timing
behavior and efficient resource utilization for real-time
workloads. Complementing this, the study introduces a
hardware-agnostic, instruction-level neuromorphic compiler
based on UNAL-IR, a compact intermediate representation
paired with a unified optimization pipeline. The proposed
framework achieves measurable improvements in latency,
energy efficiency, and scalability while decoupling
application design from specific neuromorphic hardware.
Although the current static partitioning strategy limits
adaptability to dynamic scene and traffic variations, future
advances in dynamic graph restructuring, flexible
compilation techniques, and tighter integration with
emerging memory technologies are expected to enhance
robustness. Overall, this work establishes a practical and
maintainable foundation for SNN-based edge perception in
next-generation smart-city platforms.
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