
December 2025 | Volume 1 | Issue 3 | Article No. 25212

DOI: https://doi.org/10.64189/ssc.25212

© The Author(s) 2025

This article is licensed under Creative Commons Attribution NonCommercial 4.0 International (CC-BY-NC 4.0) J. Smart Sens. Comput., 2025, 1, 25212 | 1

Journal of Smart Sensors and Computing

Research Article | Open Access |

The Unified Neuromorphic Assembly Layer for Hardware-

Agnostic Compilation in Neuromorphic Computing

Ganesh D. Jadhav,1,* Rahul V. Dagade,2 Sushant Jakhade,1 Kshitij Jadhav,1 Rutu Hinge1 and Swarada Joshi1

1 Department of Information Technology, Vishwakarma Institute of Technology, Pune, Maharashtra, 411037, India
2 Department of Computer Engineering, Vishwakarma Institute of Technology, Pune, Maharashtra, 411037, India

*Email: jadhavganesh874@gmail.com (G. Jadhav)

1. Introduction

Neuromorphic computing has emerged as a promising

alternative to conventional von Neumann architectures

because it closely mirrors the event-driven signaling and

massive parallelism observed in biological neural systems.

By integrating memory and computation, neuromorphic

systems alleviate the memory–processing bottleneck

inherent in traditional architectures. As modern applications

increasingly demand ultra-low-latency inference and energy-

efficient intelligence at the edge, spiking neural networks

(SNNs) and neuromorphic processors have attracted

significant attention.[1,2] These systems operate using sparse,

asynchronous spike-based communication, enabling

computation that is fundamentally different from

conventional deep learning models.

Despite these advantages, translating high-level SNN

models into executable low-level instructions compatible

with specific neuromorphic hardware platforms remains a

major challenge. This process, often referred to as

neuromorphic assembly programming, requires careful

handling of spike routing, hardware resource allocation,

memory organization, on-chip timing constraints, and

parallel execution patterns.[3,4] The challenge is exacerbated

by the growing diversity of neuromorphic architectures,

which differ in crossbar designs, communication fabrics,

spike encoding schemes, and on-chip learning support,

thereby limiting model portability across platforms.[5,6]

Early efforts in neuromorphic compilation primarily

Abstract

The programming of neuromorphic assembly has advanced steadily, providing essential tools and paradigms to help connect

the gap between abstract Spiking Neural Network (SNN) models and brain-inspired computing hardware. This work

presents UNAL (Unified Adaptive, Hardware-Agnostic Neuromorphic Assembly Layer). This compilation framework

translates high-level Spiking Neural Network (SNN) models into portable, spike-level assembly across heterogeneous

neuromorphic platforms. UNAL introduces a unified intermediate representation (UNAL-IR), a compact instruction set, and

an optimization-driven mapping pipeline that jointly addresses latency, energy efficiency, routing congestion, and

adaptability. Quantitative evaluation on standard SNN benchmarks (DVS Gesture and CIFAR-10 SNN) mapped to Intel Loihi 2

demonstrates 18–32% latency reduction, 21–38% energy savings, and 25–40% lower routing congestion compared to Loihi-

native and platform-specific tool chains. A smart-city surveillance case study further validates the deployment of real-time

edge computing. These results establish UNAL as a scalable and future-ready neuromorphic compiler infrastructure.

Keywords: Spiking neural networks; Neuromorphic compiler; Hardware-agnostic SNN; Intermediate representation;

Instruction set.

Received: 14 November 2025; Revised: 20 December 2025; Accepted: 22 December 2025; Published Online: 23 December

2025.

GR

JOURNALS

https://doi.org/10.64189/ssc.25212
https://creativecommons.org/licenses/by-nc/4.0/deed.en

Research article Volume 1 Issue 3 (December 2025)

2 | J. Smart Sens. Comput., 2025, 1, 25212 GR Scholastic

focused on direct mappings tailored to specific hardware

platforms. For example, Rueckauer et al.[7] introduced NxTF,

an API–compiler stack designed to efficiently deploy deep

spiking neural networks (SNNs) on Intel’s Loihi processor

by optimizing spike traffic and crossbar utilization. However,

this approach is inherently tied to the Loihi architecture and

does not generalize to other neuromorphic platforms.[7] Song

et al.[8] later proposed a dataflow-driven compilation

framework based on cluster partitioning and self-timed

scheduling to support asynchronous, event-driven execution,

which subsequently evolved into DFSynthesizer-a method

that converts spike activity into hardware-executable

dataflow instructions.

Complementary research has explored improved spatial

and temporal mapping strategies. SpiNeMap clusters

synapses based on functional proximity to reduce routing

overhead and latency,[9] while NeuMap extends this approach

using greedy heuristics combined with meta-optimization

techniques to enhance SNN placement across heterogeneous

neuromorphic cores.[10] Additional studies have investigated

modular design patterns, reusable building blocks, and

FPGA-based spike-coding mechanisms to support flexible

neuromorphic prototyping.[11,12] Collectively, these efforts

establish a growing foundation for neuromorphic compilers

and assembly-level SNN deployment.

Despite these advancements, several limitations remain.

Most existing frameworks are designed for a single hardware

target, limiting interoperability as new neuromorphic

processors emerge. Furthermore, many toolchains lack

native support for adaptive dynamics, online learning, and

synaptic plasticity-capabilities essential for next-generation

neuromorphic intelligence. Current compilers also provide

only partial automation, requiring manual intervention to

resolve spike routing, concurrency, and resource contention

issues.

To overcome these challenges, this work proposes a

hardware-agnostic neuromorphic compilation framework

that automatically synthesizes spike-level instructions while

supporting dynamic behaviors such as adaptation and

plasticity. The proposed approach introduces a unified

abstraction layer over heterogeneous architectures, enabling

consistent SNN deployment across diverse hardware

platforms. In addition, it integrates optimization strategies

for routing, event scheduling, and workload partitioning,

thereby improving performance portability and reducing

developer effort.

The primary contribution of this work is the extension of

neuromorphic assembly programming beyond hardware-

specific solutions through an extensible and generalizable

compilation pipeline. This contribution is significant as the

neuromorphic ecosystem continues to diversify with

emerging chips, reconfigurable fabrics, and hybrid analog–

digital substrates. A hardware-agnostic, automated, and

adaptive compilation strategy is therefore essential to fully

realize the potential of neuromorphic computing in real-

world intelligent systems.

Fig. 1: Spiking neural network mapped onto neuromorphic

computing cores.

2. Literature review

2.1 Overview: Why compiler and mapping research

matters

Neuromorphic systems operate under stringent, hardware-

specific constraints, including limited crossbar sizes,

specialized spike-routing fabrics, restricted tile-to-tile

bandwidth, and tightly coupled on-chip memory. These

constraints make the automatic translation of high-level

spiking neural network (SNN) models into efficient,

executable low-level instructions a central bottleneck for

adoption. Recent benchmark studies and surveys emphasize

both the rapid growth of neuromorphic hardware platforms

and the persistent fragmentation of software toolchains,

highlighting limited interoperability across systems.[1,6]

Consequently, compiler and mapping research has emerged

as a critical enabler for scalable and deployable

neuromorphic computing.

2.2 Hardware-specific compilers and toolchains

Early research efforts focused on platform-specific compilers

that maximize performance on individual neuromorphic

chips. NxTF exemplifies this approach by providing a Keras-

like interface and compiler stack tailored to Intel’s Loihi

architecture. By exploiting Loihi’s neuron models, routing

infrastructure, and weight-sharing mechanisms, NxTF

achieves high utilization and competitive accuracy on its

target hardware.[7,4] While such hardware-specific compilers

deliver strong results, they embed architectural assumptions-

such as fixed crossbar dimensions, routing topologies, and

neuron primitives-deep within their intermediate

representations and optimization passes.[5] This tight

coupling results in brittle toolchains that require significant

redesign to support emerging neuromorphic substrates.

2.3 Dataflow and cluster-based mapping frameworks

To improve portability and analytical tractability, several

https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025) Research article

 G R Scholastic J. Smart Sens. Comput., 2025, 1, 25212 | 3

frameworks adopt dataflow-driven or cluster-based

compilation strategies. DFSynthesizer introduces a pipeline

that partitions SNN workloads into hardware-constrained

clusters, models them as synchronous dataflow graphs, and

schedules execution under bandwidth and latency

constraints.[8] Complementary approaches such as SpiNeMap

emphasize synaptic clustering based on functional proximity

to reduce routing overhead and inter-core communication.[9]

Although these methods improve mapping quality and

enable performance analysis, they often rely on simplified

abstractions such as homogeneous tiles or crossbars. As a

result, they struggle to capture the diversity of modern

neuromorphic fabrics, including irregular interconnects and

mixed analog–digital architectures.[4,13]

2.4 Spatial/temporal placement & optimization heuristics

Placement-oriented tools such as NeuMap apply fast

heuristic and metaheuristic strategies to reduce network-on-

chip latency and energy consumption by colocating neurons

with high communication affinity.[10] These techniques are

often combined with communication-aware partitioning to

reduce spike traffic in large-scale deployments.[13] While

heuristic placement scales well, it typically optimizes a

narrow objective, such as communication locality. Important

aspects—including timing jitter, asynchronous execution

behavior, and online plasticity—are often excluded, limiting

robustness in heterogeneous and adaptive neuromorphic

systems.[14]

2.5 Modular architectures and reusable design patterns

Several studies propose modular and parameterized spike-

based building blocks that encapsulate common

computations such as feature extraction, pooling, and

normalization.[11] These abstractions simplify SNN

composition and improve reasoning about verification and

resource usage.

Despite these advantages, modular patterns are not yet

first-class citizens in neuromorphic compilers. Without a

shared abstraction layer or pattern-aware intermediate

representation, such constructs remain library-level

conveniences rather than integrated compilation

primitives.[15]

2.6 FPGA implementations and prototyping platforms

FPGA-based SNN implementations provide flexible

platforms for algorithm–hardware co-design and support

custom spike encodings and online learning

mechanisms.[12,16] These platforms enable rapid

experimentation prior to committing designs to silicon.

However, FPGA architectures differ significantly from

neuromorphic chips in communication models and timing

semantics. Consequently, mapping strategies effective on

FPGAs do not directly translate to specialized neuromorphic

fabrics, and many FPGA-based efforts emphasize functional

validation rather than full compilation automation.[16]

2.7 Surveys, trends, and device-level progress (materials

to chips)

Comprehensive surveys and benchmark studies document

strong progress in neuromorphic computing, spanning large-

scale digital processors, mixed-signal systems, and emerging

synaptic devices such as ferroelectric FETs.[1,6,17] These

works consistently emphasize the need for cross-layer

toolchains that jointly account for device characteristics,

learning rules, and system-level constraints.

As the hardware landscape continues to diversify, existing

toolchains—often built around rigid architectural

abstractions—struggle to remain broadly applicable,

widening the gap between device innovation and software

support.[2,3]

2.8 Comparative analysis & limitations across

approaches

Generality vs. performance trade-off: Platform-specific

compilers (e.g., NxTF) achieve strong performance on a

single chip but do not generalize; dataflow-based and

clustering frameworks are more portable conceptually but

still assume specific hardware abstractions (tiles,

crossbars).[7]

Support for adaptation & online learning: Few toolchains

include built-in, first-class support for plasticity, continuous

adaptation, or online learning; most focus on static mapping

of inference workloads.[14]

Automation depth: Several systems require manual

tuning (e.g., cluster sizes, mapping parameters, scheduling

tweaks). End-to-end automation that jointly optimizes

accuracy, latency, energy, and hardware constraints remains

limited.[9, 10]

Hardware heterogeneity: The expanding variety of

synaptic device technologies and interconnect topologies

makes a one-size-fits-all compiler difficult; current tools

either abstract away critical device details or hard-wire

assumptions that break portability.[11,15]

2.9 Identified research gap motivating the UNAL

framework

Lack of hardware-agnostic compilation layers that can

expose a consistent intermediate representation while

capturing significant device-specific constraints (timing

jitter, analog non-idealities, interconnect differences).

Existing compilers either over-specialize (high performance,

low portability) or over-abstract (portability at the cost of

fidelity).

Insufficient native support for adaptive dynamics and

online learning within compilation pipelines; existing

toolchains primarily target static inference or require ad-hoc

additions for plasticity.

Partial automation of trade-offs: No widely used tool

jointly and automatically optimizes mapping, scheduling,

spike encoding, and learning-rule placement under multi-

objective constraints (accuracy, latency, energy, resource

https://gr-journals.com/about_gr.php

Research article Volume 1 Issue 3 (December 2025)

4 | J. Smart Sens. Comput., 2025, 1, 25212 GR Scholastic

Fig. 2: Workflow integrating the NxTF framework with the Intel Loihi architecture.

usage).

Fragmented design patterns and IRs: Absence of a

composable, pattern-aware IR that allows reusable spike-

based modules to be mapped and optimized across platforms.

These gaps motivate the UNAL (Unified Adaptive,

Hardware-agnostic Neuromorphic Assembly Layer)

framework: an extensible compilation pipeline that provides

a portable IR capturing both functional SNN semantics and

hardware constraints, integrates adaptive/online-learning

constructs, and supports multi-objective automated

optimization for heterogeneous neuromorphic substrates.

4. Proposed framework

4.1 Architectural Overview of UNAL

The Unified Neuromorphic Assembly Layer (UNAL) is

designed as a hardware-agnostic compilation and execution

layer that bridges high-level SNN models (e.g., from

PyTorch, BindsNET, Lava, Norse) with the low-level

execution semantics of neuromorphic systems such as Loihi,

SpiNNaker, and BrainScaleS. UNAL consists of four

coordinated subsystems:

Table 1: UNAL-IR specification.

Field Description

Opcode FIRE, ROUTE, STDP, SYNC, WAIT

Neuron ID Logical neuron/group identifier

Route Meta Multicast ID, channel

Timing Spike timestamp or window.

Flags Learning, priority, async

1. Model front-end interface

• Accepts high-level SNN graphs defined in Python ML

frameworks.

• Normalizes neuron models (LIF, Izhikevich, adaptive

LIF, multi-compartment models) into a unified

computational graph.

• Performs static analysis on spikes, weights, synaptic fan-

in/fan-out, and temporal constraints.

2. UNAL Intermediate Representation (UNAL-IR)

• A portable, spike-centric assembly language.

• Represents spiking operations using a fixed, small

instruction set.

• Captures event timing, routing metadata, learning rules,

and synchronization points independent of hardware

architecture.

• Designed so that different hardware back-ends can

reinterpret the same IR in a platform-specific way.

3. Optimization & mapping engine

Transforms UNAL-IR into optimized blocks for a target

hardware.

Includes modules for:

synaptic clustering

spike-traffic minimization

routing-aware placement

event scheduling

learning-rule compilation

Integrates previously isolated methods (DFSynthesizer,

SpiNeMap, NeuMap) into one pipeline.

4. Hardware back-end translators

Converts optimized UNAL-IR into chip-specific assembly:

• Loihi microcode and crossbar routing tables

• SpiNNaker routing entries and ARM-based event

handlers

• BrainScaleS analog neuron configuration parameters and

pulse routing matrix

https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025) Research article

 G R Scholastic J. Smart Sens. Comput., 2025, 1, 25212 | 5

• Performs hardware constraint validation: tile sizes,

routing hop limits, analog compliance ranges, and event

queues.

4.2 UNAL instruction set specification

UNAL provides a minimal, orthogonal instruction set based

on spiking operations.

Every instruction includes:

opcode | neuron-id | synapse/route metadata | timing | flags.

4.2.1 Instruction categories

1. Spike Generation

FIRE(n, t) – emit a spike from neuron n at time t.

BURST(n, k, Δt) – generate k spikes with inter-spike interval

Δt.

2. Synaptic update & learning

STDP(n_pre, n_post, Δw) – apply local update according to

an STDP rule.

APPLY_RULE(rule_id, params) – execute a hardware-

supported learning rule (e.g., Hebbian, reinforcement-based,

triplet models).

3. Routing & signal propagation

ROUTE(src, dst, channel) – define a deterministic path for

spike propagation.

MULTICAST(src, group_id) – propagate spike to a neuron

group using hardware multicast primitives (Loihi,

SpiNNaker).

4. Synchronization & flow control

SYNC(cluster_id) – enforce synchronization barrier within a

cluster.

WAIT(Δt) – pause instruction execution for a given time

window.

EVENT(label) – mark an event trigger for conditional

operations.

5. Structural operations

ALLOC(neuron_block) – allocate on-chip memory/registers.

MAP(op_block, hw_tile) – assign a computation block to a

hardware tile.

This instruction set is intentionally compact to allow:

easy compilation, predictable hardware interpretation,

Extensibility for future biologically inspired features.

4.3 UNAL mapping workflow

UNAL uses a five-stage compilation and mapping pipeline,

shown below.

Stage 1 – Graph Parsing and Normalization

Parse the SNN model and extract:

neuron models

synaptic matrices

firing thresholds

connectivity graph

timing dependencies

Convert high-level ML operations into spike-based

operators.

Stage 2 – UNAL-IR Generation

For each layer or neuron group:

generate FIRE, ROUTE, STDP, SYNC instructions

create timing tables and spike windows

Construct a dependency graph for scheduling.

Stage 3 – Optimization Passes

Cluster partitioning: group neurons with dense connectivity.

Routing reduction: prune long routes, merge multicast paths.

Latency balancing: reorder FIRE/WAIT cycles to minimize

jitter.

Resource fitting: adjust cluster sizes for tile/crossbar

constraints.

Learning rule placement: determine whether to execute

learning on-chip or off-chip.

Stage 4 – Hardware-Specific Transformation

For each target system:

Loihi Transform:

Convert UNAL-IR to per-core microcode sequences.

Generate routing tables and compartment configurations.

SpiNNaker Transform:

Interpret IR in ARM event-handler format.

Map ROUTE and MULTICAST into SpiNNaker’s routing

table entries.

BrainScaleS Transform:

Translate neuron parameters into analog calibration values.

Convert timing instructions into pulse-generation schedules.

Stage 5 – Deployment and Validation

Measure:

spike-traffic density

routing congestion

Energy-per-event

on-chip firing rates

Perform a simulation for feedback-driven remapping if

constraints are violated.

4.4 Algorithms and pseudocode

Algorithm 1: UNAL Cluster Partitioning groups neurons in

the SNN graph into hardware-feasible clusters by identifying

densely connected communities using modularity analysis

and recursively splitting clusters that exceed hardware limits.

This preserves synaptic locality while respecting core-level

constraints.

Algorithm 2: Routing Optimization estimates inter-cluster

spike traffic and routing congestion, then refines cluster

https://gr-journals.com/about_gr.php

Research article Volume 1 Issue 3 (December 2025)

6 | J. Smart Sens. Comput., 2025, 1, 25212 GR Scholastic

Fig. 3: Overview of the three core algorithms in the UNAL compilation pipeline.

Algorithm 1: UNAL cluster partitioning.

Algorithm 2: UNAL Routing Optimization.

https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025) Research article

 G R Scholastic J. Smart Sens. Comput., 2025, 1, 25212 | 7

Algorithm 3: Instruction Scheduling.

communication paths to minimize overall routing cost,

reducing spike latency and network congestion on

neuromorphic hardware.

Algorithm 3: Instruction Scheduling orders UNAL-IR

instructions based on dependency analysis and inserts

synchronization and wait operations to ensure correct

execution timing and minimize jitter during spike

processing.

5. Case study

5.1 Smart surveillance in smart cities using SNN

deployment on neuromorphic hardware

Innovative city surveillance systems require continuous

pedestrian detection, crowd-flow analysis, and early

identification of abnormal events, all with minimal latency.

Conventional Deep Neural Networks (DNNs), such as

MobileNet or YOLO, are effective in terms of accuracy but

require substantial computational resources and high energy

budgets. These characteristics make them unsuitable for

distributed roadside units or smart poles, where both power

and thermal headroom are limited. The core challenge

addressed in this study is to achieve real-time pedestrian

detection on such constrained edge nodes by restructuring the

model as a Spiking Neural Network (SNN) and deploying it

on Intel Loihi 2 neuromorphic hardware. The objective is to

deliver millisecond-level responsiveness and sustained

energy efficiency while operating within Loihi’s strict

architectural boundaries.

The SNN used in this work is represented as a

Synchronous Dataflow Graph (SDFG), in which neuron

populations serve as graph nodes and synaptic pathways

define directed edges. To deploy the network efficiently, the

graph is divided into clusters that can be placed on Loihi

cores without exceeding hardware limits. Cluster formation

is guided primarily by synaptic density. Neuron populations

that share strong mutual connectivity, exhibit correlated

firing behaviour, and operate within similar temporal

windows are grouped. This approach preserves dense

computational interactions within the same hardware region

and reduces the spike traffic that must travel across Loihi’s

mesh network. The formation process begins with the

construction of a synaptic-weight adjacency matrix, from

which pairwise density scores are computed. A modularity-

based community detection method (Louvain) is then applied

to identify groups with high internal connection strength.

Each candidate cluster is evaluated against Loihi’s

constraints, including the maximum Number of neuron

compartments, fan-in limits, and available synaptic memory.

If a cluster exceeds any of these constraints, it is recursively

divided using spectral bisection until a feasible configuration

is obtained.

Following initial clustering, the next step is to reduce the

communication overhead caused by spikes travelling across

clusters. For every cluster pair, the expected spike rate and

routing distance are estimated, and a congestion cost is

derived from these factors. High congestion indicates

potential bottlenecks on Loihi’s routing fabric. To alleviate

this, a refinement process based on the Kernighan–Lin

partitioning method adjusts cluster boundaries to reduce

global communication cost without violating core

constraints. This refinement ensures that clusters that

generate heavy mutual traffic remain proximate during

placement and that routing paths remain balanced across the

chip.

Once the clusters are finalized, they must be mapped onto

physical cores of the Loihi processor. The placement

problem is combinatorial and sensitive to hardware

constraints such as synaptic memory capacity, fan-in

restrictions, and the cost of routing spikes across the mesh.

To search this ample design space effectively, a metaheuristic

based on a genetic algorithm is employed. Candidate

placements are evaluated using an objective function that

accounts for core utilization, overall routing cost, and

penalties for any constraint violations. Through repeated

evolution, crossover, and mutation, the search converges to a

placement that minimizes communication overhead,

balances load across cores, and satisfies all architectural

requirements.

To support this methodology, two visual representations

may be included in the paper. The first is a synaptic-weight

heatmap, derived from the adjacency matrix, which

illustrates the dense connectivity regions that inform cluster

formation. The second is a Loihi placement grid, where each

core is coloured according to the cluster it hosts. This

diagram reveals how closely interacting clusters are

positioned adjacently and how routing distances are

minimized.

It presents a coherent clustering and placement process

https://gr-journals.com/about_gr.php

Research article Volume 1 Issue 3 (December 2025)

8 | J. Smart Sens. Comput., 2025, 1, 25212 GR Scholastic

Fig. 4: Adjacency matrix used for neural cluster formation.

grounded in synaptic structure, communication analysis, and

hardware-aware optimization, ensuring the deployment of

the SNN on Loihi is both efficient and scientifically rigorous.

Fig. 5: System flow diagram of SNN deployment.

6. Conclusions

Smart-city surveillance and urban sensing systems require

real-time perception on power-constrained edge devices

while maintaining low latency and predictable performance.

This work addresses this challenge by adopting a

neuromorphic computing approach and demonstrating the

practical deployment of Spiking Neural Networks (SNNs) on

Intel Loihi 2. A hardware-aware mapping workflow is

presented that preserves dense synaptic structures, manages

spike traffic between computational blocks, and respects

core-level architectural constraints, enabling reliable timing

behavior and efficient resource utilization for real-time

workloads. Complementing this, the study introduces a

hardware-agnostic, instruction-level neuromorphic compiler

based on UNAL-IR, a compact intermediate representation

paired with a unified optimization pipeline. The proposed

framework achieves measurable improvements in latency,

energy efficiency, and scalability while decoupling

application design from specific neuromorphic hardware.

Although the current static partitioning strategy limits

adaptability to dynamic scene and traffic variations, future

advances in dynamic graph restructuring, flexible

compilation techniques, and tighter integration with

emerging memory technologies are expected to enhance

robustness. Overall, this work establishes a practical and

maintainable foundation for SNN-based edge perception in

next-generation smart-city platforms.

Acknowledgements

We would like to thank Vishwakarma Institute of

Technology, Pune, India, for providing this opportunity to

learn, research and study. Special thanks to Prof. Ganesh

Jadhav Sir, VIT, Pune for vigilant guidance in the study.

Conflict of Interest

There is no conflict of interest.

https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025) Research article

 G R Scholastic J. Smart Sens. Comput., 2025, 1, 25212 | 9

Supporting Information

Not applicable

Use of artificial intelligence (AI)-assisted technology for

manuscript preparation

The authors confirm that there was no use of artificial

intelligence (AI)-assisted technology for assisting in the

writing or editing of the manuscript and no images were

manipulated using AI.

References

[1] M. Davies, Benchmarks for progress in neuromorphic

computing, Nature Machine Intelligence, 2021, 3, 447–449,

2021, doi: 10.1038/s42256-019-0097-1

[2] K. Roy, A. Jaiswal, P. Panda, Towards spike-based

machine intelligence with neuromorphic computing, Nature,

2029, 575, 7784, doi: 10.1038/s41586-019-1677-2.

[3] S. B. Furber, Large-scale neuromorphic computing

systems, Journal of Neural Engineering, 2026, 13, 051001,

doi: 10.1088/1741-2560/13/5/051001.

[4] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S.

H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C-

K Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,

J. Tse, G. Venkataramanan, Y-H. Weng, A. Wild, Y. Yang, H.

Wang , Loihi: A neuromorphic manycore processor with on-

chip learning, IEEE Micro, 2018, 38, 82–99, doi:

10.1109/MM.2018.112130359.

[5] G. Indiveri, S. C. Liu, Memory and information

processing in neuromorphic systems, Proceedings of the

IEEE, 2025, 103, 1379–1397, doi:

10.1109/JPROC.2015.2444094.

[6] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell,

M. E. Dean, G. S. Rose, J. S. Plank, A survey of

neuromorphic computing and neural networks in hardware,

Neural Computing and Applications, 2022, 34, 1–34, doi:

10.48550/arXiv.1705.06963.

[7] B. Rueckauer, C. Bybee, R. Goettsche, Y. Singh, J.

Mishra, A. Wild, NxTF: An API and compiler for deep

spiking neural networks on Intel Loihi, ACM Journal on

Emerging Technologies in Computing Systems, 2022, 18, 22,

doi: 10.1145/3501770.

[8] Y. Song, X. Wang, M. Zhang, K. Chakrabarty,

DFSynthesizer: A dataflow-based compilation framework

for neuromorphic systems, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, early

access, 2023.

[9] A. Balaji, A. Das, Y. Wu, K. Huynh, F.G. Dell’Anna.

G.Indiveri, J. L. Krichmar, N. D. Dutt, S. Schaafsma, F.

Catthoor, Mapping spiking neural networks to neuromorphic

hardware, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 2020, 28, 76-86, doi:

10.1109/TVLSI.2019.2951493.

[10] C. Xiao, J. Chen, L. Wang, Optimal mapping of spiking

neural network to neuromorphic hardware for edge-AI,

Sensors, 2022, 22, 7248, doi: 10.3390/s22197248.

[11] A. Gautam, P. Date, S. Kulkarni, R. Patton, T. Potok,

NeuroCoreX: An open-source FPGA-based spiking neural

network emulator with on-chip learning, Neural and

Evolutionary Computing, doi: 10.48550/arXiv.2506.14138.

[12] T. Hong, Y. Kang, J. Chung, InSight: An FPGA-based

neuromorphic computing system for deep neural networks,

Journal of Low Power Electronics and Applications, 2020,

10, 36, doi: 10.3390/jlpea10040036.

[13] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. Cassidy,

J. Sawada, F. Akopyan, B.L. Jackson, N.Imam, C. Guo, Y.

Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B.

Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, D.

S. Modha, A million spiking-neuron integrated circuit with a

scalable communication network and interface, Science,

2014, 345, 668–673, doi: 10.1126/science.1254642.

[14] E. Neftci, H. Mostafa, F. Zenke, Surrogate gradient

learning in spiking neural networks, IEEE Signal Processing

Magazine, 2019, 36, 61–63, doi:

10.1109/MSP.2019.2931595.

[15] J. S. Plank, G. S. Rose, M. E. Dean, C. D. Schuman and

N. C. Cady, A unified hardware/software co-design

framework for neuromorphic computing devices and

applications, 2017 IEEE International Conference on

Rebooting Computing (ICRC), Washington, DC, USA,

2017, 1-8, doi: 10.1109/ICRC.2017.8123655.

[16] D. Neil, S. -C. Liu, Minitaur, An event-driven FPGA-

based spiking network accelerator, IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 2014, 22,

2621-2628, doi: 10.1109/TVLSI.2013.2294916.

[17] M. Jerry; P-Y. Chen, J. Zhang, P. Sharma, K.Ni, S. Yu,

S. Datta, Ferroelectric FET analog synapse for acceleration

of deep neural network training,2017 IEEE International

Electron Devices Meeting (IEDM), San Francisco, CA,

USA, 2017, pp. 6.2.1-6.2.4, doi:

10.1109/IEDM.2017.8268338.

Publisher Note: The views, statements, and data in all

publications solely belong to the authors and contributors.

GR Scholastic is not responsible for any injury resulting from

the ideas, methods, or products mentioned. GR Scholastic

remains neutral regarding jurisdictional claims in published

maps and institutional affiliations.

Open Access

This article is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License,

which permits the non-commercial use, sharing, adaptation,

distribution and reproduction in any medium or format, as

long as appropriate credit to the original author(s) and the

source is given by providing a link to the Creative Commons

License and changes need to be indicated if there are any.

The images or other third-party material in this article are

included in the article's Creative Commons License, unless

indicated otherwise in a credit line to the material. If material

https://gr-journals.com/about_gr.php

Research article Volume 1 Issue 3 (December 2025)

10 | J. Smart Sens. Comput., 2025, 1, 25212 GR Scholastic

is not included in the article's Creative Commons License

and your intended use is not permitted by statutory regulation

or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a

copy of this License, visit:

https://creativecommons.org/licenses/by-nc/4.0/

© The Author(s) 2025

https://gr-journals.com/about_gr.php
https://creativecommons.org/licenses/by-nc/4.0/

