[16] A. Abobakir, A. Abdulazeez, A review on utilizing machine learning classification algorithms for skin cancer.
Journal of Applied Science and Technology Trends, 2022, 5, 60–71, doi: 10.38094/jastt52191.
[17] A. Toprak, I. Aruk, A hybrid convolutional neural network model for the classification of multi-class skin cancer.,
International Journal of Imaging Systems and Technology, 2024, 34, e23180, doi: 10.1002/ima.23180.
[18] A. S. Al-Waisy, S. Al-Fahdawi, M. I. Khalaf, M. A. Mohammed, B. Al-Attar, M .N. Al-Andoli, A deep learning
framework for automated early diagnosis and classification of skin cancer lesions in dermoscopy images, Scientific
Reports, 2025, 15, 31234, doi: 10.1038/s41598-025-15655-9.
[19] M. A. H. Lubbad, I. L. Kurtulus, D. Karaboga, K. Kilic, A. Basturk, B. Akay, O. U. Nalbantoglu, O. M. Durmaz
Yilmaz, M. Ayata, S. Yilmaz, I. Pacal, A comparative analysis of deep learning-based approaches for classifying dental
implants decision support system, Journal of Imaging Informatics in Medicine, 2024, 37, 2559–2580, doi:
10.1007/s10278-024-01086-x.
[20] F. Brutti, F. La Rosa, L. Lazzeri, C. Benvenuti, G. Bagnoni, D. Massi, M. Laurino, Artificial intelligence
algorithms for Benign vs. Malignant Dermoscopic skin lesion image classification, Bioengineering, 2023, 10, 1322.
doi: 10.3390/bioengineering10111322
[21] H. Hussein, A. Magdy, R. F. Abdel-Kader, K. Abd El Salam, Binary classification of skin cancer images using
pre-trained networks with I-GWO. Inteligencia Artificial, 2024, 27, 102–116, doi: 10.4114/intartif.vol27iss74pp102-
116
[22] A. Kalaivani, S. Karpagavalli, Detection and classification of skin diseases with ensembles of deep learning
networks in medical imaging, International Journal of Health Sciences, 2022, 13624–13637, doi:
10.53730/ijhs.v6ns1.8402
[23] M. Tan, Q. V. Le, EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of
the 36th International Conference on Machine Learning, 2019, 6105–6114.
[24] A. A. Abd El-Aziz, M. A. Mahmood, S. A. El-Ghany, EfficientNet-B3-based automated deep learning framework
for multiclass endoscopic bladder tissue classification, Diagnostics, 2025, 15, 2515, doi:
10.3390/diagnostics15192515.
[25] Kanchana K., Kavitha S., Anoop K. J., Chinthamani B., Enhancing skin cancer classification using EfficientNet
B0–B7 through transfer learning, Asian Pacific Journal of Cancer Prevention, 2024, 25, 1795–1802, doi:
10.31557/APJCP.2024.25.5.1795.
[26] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, IEEE, 2018, 7132–7141.
[27] S. Woo, J. Park, J.-Y. Lee, I. S. Kweon, CBAM: Convolutional block attention module, In Proceedings of the
European Conference on Computer Vision, Sprigger, 2028, 3–19.
[28] M. Harahap, J. Leonardi, S. C. Kwok, D. M. Ong, A. M. Husein, D. Ginting, B. A. Silitonga, V. Wizley, Skin
cancer classification using EfficientNet architecture, Bulletin of Electrical Engineering and Informatics, 2024, 13,
2716–2728, doi: 10.11591/eei.v13i4.7159
[29] S. Ul Amin, Y. Jung, B. Kim, M. S. Abbas, S. Seo, Enhanced anomaly detection using EfficientNet and CBAM,
IEEE Access, 2024, 12, 162697–162712, doi: 10.1109/ACCESS.2024.3488797.
[30] S. Remya, T. Anjali, V. Sugumaran, A novel transfer learning framework for multimodal skin lesion analysis.
IEEE Access, 2024, 12, 50738–50754, doi: 10.1109/ACCESS.2024.3385340.
[30] N. Codella, V. Rotemberg, P. Tschandl, M. Emre Celebi, S. Dusza, D. Gutman, B. Helba, A. Kalloo, K. Liopyris,
M. Marchetti, H. Kittler, A. Halpern, Skin lesion analysis toward melanoma detection: A challenge at the International
Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC). In
Proceedings of the IEEE International Symposium on Biomedical Imaging IEEE,168–172.
[31] J. Barata, M. Ruela, M. Francisco, T. Mendonça, J. Marques, Two systems for the detection of melanomas in
dermoscopy images using texture and color features. In Proceedings of the IEEE International Symposium on
Biomedical Imaging, IEEE, 2012, 49–52.
[32] H. Ganster, P. Pinz, R. Röhrer, E. Wildling, M. Binder, H. Kittler, Automated melanoma recognition, IEEE
Transactions on Medical Imaging, 2001, 20, 233-239, doi: 10.1109/42.918473.
[33] Q. Abbas, I. F. Garcia, M. E.Celebi, W. Ahmad, A feature-preserving hair removal algorithm for dermoscopy
images, Skin Research and Technology, 2013, 19, e103–e120, doi: 10.1111/srt.12028.
[34] I. Maglogiannis, C. N. Doukas, Overview of advanced computer vision systems for dermatological applications,
International Journal of Artificial Intelligence Tools, 2008, 17, 921–936, doi: 10.1142/S0218213008004368.
[35] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, S, Thrun, Dermatologist-level classification
of skin cancer with deep neural networks, Nature, 2017, 542, 115–118, doi: 10.1038/nature21056.
[36] H. A. Haenssle, C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl, A. Blum, A. Kalloo, A. Ben Hadj Hassen, L.
Thomas, A. Enk, L. Uhlmann, C. Alt, M. Arenbergerova, R. Bakos, A. Baltzer, I. Bertlich, A. Blum, T. Bokor-
Billmann J. Bowling, N. Braghiroli, R. Braun, K. Buder-Bakhaya, T. Buhl, H. Cabo, L. Cabrijan, N. Cevic, A. Classen,