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1. Introduction 

Melanoma and other types of skin cancer is an emerging 

public health problem with high rates of morbidity, mortality, 

and healthcare expenditure across the globe.[1] The World 

Health Organization reports that the number of non-

melanoma skin cancer cases and over 300000 cases of 

melanoma worldwide annually is increasing the amount of 

concern regarding the public health implication of skin 

diseases.[2] Melanoma has a great likelihood of metastasis as 

well as the largest percentage of deaths associated with skin 

cancer even though it makes up a smaller portion of all 

cases.[3] Small melanoma can be easily removed with surgery 

so that in its early stages, it is curable, but once diagnosed 

late, surgery will not help much especially in terms of 

survival, and it makes the treatment more complicated. The 

non-melanoma skin cancer such as the basal cell carcinoma, 

squamous cell carcinoma among others, also play a role in 

contributing to high incidence of skin cancer in the world and 

create a cumulative burden on dermatology.[4] In this regard, 

accurate and prompt detection of cutaneous lesions is 
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essential in enhancing patient outcomes, resource allocation, 

and large-scale screening initiatives, particularly in areas 

with a shortage of experienced dermatologists. 

 

1.1 Clinical background and dermoscopy 

Dermoscopy is an imaging modality which is not invasive 

and which enlarges and improves visualization of the 

subcutaneous skin structures in order to allow a more 

detailed evaluation of pigment patterns, vascular 

organization, and lesion boundaries.[5] Dermoscopy has a 

significant higher diagnostic sensitivity and specificity of 

melanoma and other pigmented lesions in the hands of 

experts than the unaided eye view.[6] Nonetheless, 

dermoscopy interpretation is very operator-specific, and it 

involves a lot of training and experience. Even trained 

dermatologists show inter-observer variability because of 

minor and overlapping morphological patterns in benign and 

malignant lesions. Furthermore, differences in imaging 

equipment, conditions of acquisition and the type of skin of 

the patient are other complicating factors which make 

standardized visual assessment impossible.[7] Fig. 1 illustrate 

Clinical background and dermoscopy. 

Clinicians in primary care and in a resource-constrained 

setting might not receive the benefit of such higher levels of 

dermoscopic training, resulting in either under-referral of 

suspicious lesions or over-referral of benign lesions, which 

has both clinical and economic implications. The growing 

rate of skin lesion images that have been obtained through 

dermatoscopes and consumer-grade cameras increase the 

necessity of computation support that is scaled. It, therefore, 

follows that there is an enthusiastic impetus to build 

automated dermoscopic analysis frameworks capable of 

estimating and/or adding to masterful performance and help 

to standardize and equalize diagnostic procedures. 

 

1.2 Challenges in manual dermoscopic assessment 

Manual dermoscopic analysis is objective and it is subject to 

cognitive bias including anchoring, fatigue and heuristic 

reliance. The difference between early melanoma and benign 

nevi or between inflammatory dermatoses and infectious or 

neoplastic lesions is often based on subtle textural, chromatic 

and structural effects that are not always easily identified. 

There is also high intra-class variability(e.g., different 

appearances of melanoma in different sites on the body and 

in different skin tones) and inter-class similarity (e.g., benign 

lesions that resemble malignancy) that further contribute to 

obstacles to proper visual diagnosis.[8] 

Additionally, non-dermoscopic images do not invariably 

correspond to the diagnostic criteria that are based on 

dermoscopy e.g. pattern analysis, algorithmic scoring 

systems, or the ABCD rule, and implementing these 

diagnostic criteria as a system in a high-volume clinical 

setting can be challenging. With the increase in image 

repositories, manual inspection and triage are no longer 

feasible, and computer-aided diagnosis (CAD) systems that 

can process large-scale image streams and maintain the same 

level of performance are sought. All these problems highlight 

the importance of having powerful, data-driven procedures 

capable of training discriminative patterns to go beyond 

handcrafted specifications.[9] 

 

1.3 Limitations of existing machine learning approaches 

Original computational techniques to analyse skin lesions 

used conventional machine learning pipelines of hand-

engineered feature-extractors (e.g., colour histograms, 

texture descriptors, border irregularity measures) and 

classifier (e.g. support vector machines, k-nearest neighbours 

or random forests).[10-14] Although these methods have given 

a first-time understanding of whether automated lesion 

recognition is feasible, their performance was inherently 

limited by the expressiveness of manually specified 

features.[15] Hand-crafted descriptors typically do not encode 

high-order and complicated interaction between local 

patterns, and are vulnerable to changes in illumination, scale,

 
Fig. 1: Clinical background and dermoscopy. 
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and camera. 

Moreover, in classical pipelines, the explicit 

segmentation of the lesion area against the skin around it is 

performed, which is also a non-trivial and non-error-prone 

step on its own. These errors in segmentation spread to 

lower-level features and worsen classification. Class 

imbalance also poses a challenge to many traditional 

algorithms when working with real-world skin lesion data 

since the number of benign lesions is many times the number 

of cases of malignant lesions. Consequently, these techniques 

are generally insensitive to rarity of occurrence but clinically 

important classes, and are not sufficiently robust to be used 

in heterogeneous clinical environments.[16] 

 

1.4 Limitations of existing deep learning approaches 

Deep learning and convolutional neural networks (CNNs), in 

particular, have significantly improved the medical image 

analysis and dermoscopic lesion classification 

performance.[17,18] Traditional architectures like VGG, 

ResNet, and Inception are highly accurate on hand-curated 

benchmark data.[19] Nonetheless, a number of constraints 

exist when such models are implemented on realistic multi-

class skin disease data that has a large range of 

dermatological diseases. 

First, most of the previous studies are dealing with binary 

or low-cardinality classification (e.g., melanoma vs. benign), 
[20,21] which are not representative of the entire range of 

dermatological diagnoses seen in practice. The 

generalization of such models to multi-class problems in 

which dozens of types of diseases are involved creates 

serious difficulties in learning the discriminatory features of 

visually similar classes. Second, vanilla CNN architectures 

commonly assume that all spatial locations and feature 

channels are equal, and there is no explicit representation of 

the relative significance of various regions and modalities of 

the lesion image. The inability results in inefficient use of 

both local and global contextual information especially in the 

presence of background artifacts (hair, rulers, markers or 

normal skin structures). 

Third, generic image classification tasks are traditionally 

based on conventional deep networks, which are not 

optimized on a systematic basis on depth, width, and 

resolution to the particular limitations of dermatological 

data. The risk associated with over-parameterized model is 

that it overfits small or moderate size clinical data, whereas 

the risk associated with under-parameterized architecture is 

that the model does not have enough capacity to learn the 

more complex patterns of lesions. Moreover, most of the 

existing methods fail to solve specific domain-related 

problems which include extreme imbalance of classes, 

uneven image quality and presence of non-clinical artifacts 

within large repositories of skin images.[22] 

 

1.5 Need for robust automated multi-class classification 

The above shortcomings encourage the emergence of 

effective automated classification schemes to suit the case of 

multi-class skin disease detection in diverse image data. An 

effective CAD system in the field of dermatology must meet 

a range of criteria: (1) high discriminative accuracy on a 

broad range of lesion types, including rare but high-risk 

cases; (2) robustness to noise, changing illumination and 

acquisition artifacts; (3) effective exploitation of labelled 

data through transfer learning with large natural image 

corpora; and (4) architectural features to concentrate 

computational resources on areas of lesion of diagnostic 

interest as opposed to unproductive background. 

In addition, these systems should be measured based on 

clinical priorities, such as malignant and severe 

inflammatory or infectious disease sensitivity, and macro-

averaged metrics, which considers class imbalance. In multi-

class scenarios, where further datasets such as DermNet-23, 

with over twenty differing diagnostic cases, the 

heterogeneous visualization of the data has to be managed, 

yet not favoring the majority classes. Such demands demand 

the high-level network designs involving the combination of 

parameter-efficient backbones and explicit attention 

mechanisms as well as the strict optimization techniques.[23] 

 

1.6 Problem statement  

Nonetheless, even with much advancement in deep learning-

based skin lesion analysis, some critical gaps are found in 

research. To begin with, a comparative lack of approaches 

incorporating modern and compound-scale architectures, 

including EfficientNet-B3,[24] alongside attention 

mechanisms with attention to dermatological image 

properties, is relatively scarce. Most of the extant literature 

is based on the application of legacy CNN backbones or the 

application of attention modules narrowly or in an ad-hoc 

fashion, without a thorough examination of their effect on 

multi-class performance. Second, previous research tends to 

focus on the general accuracy on a small sample of lesion 

types, without giving much indication of per-class accuracy 

and the model behavior under strong imbalance between 

classes. Detailed studies based on macro-averaged precision, 

recall, F1-score, and area under the ROC curve are required, 

especially when data includes different and uneven 

diagnostic categories. Third, not many studies offer an end-

to-end, reproducible pipeline to include effective 

preprocessing, systematic data augmentation, optimized 

transfer learning, and attention-focused feature refinement to 

large multi-class dermatology datasets. 

Lastly, it is not well-known how lightweight and 

attention-enhanced architectures can help fill the gap 

between research prototypes and clinically viable CAD 

systems. Namely, how the integration of parameter-efficient 

backbones and channelspatial attention will enhance 

generalization without making the computationally 

unsustainable to be deployed in a real-world clinical setting 

is not fully studied yet.[25] 
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1.7 Novel contributions of this work 

In order to fill the gaps, the work offers a transfer learning-

based model of multi-classes of skin lesions identification 

The summarized key contributions are as follows.  

1. The paper uses an EfficientNet-B3 backbone as the main 

feature extractor of both dermoscopic and clinical images of 

skin lesions. EfficientNet-B3 allows scaling the depth, width, 

and input resolution of the network to a desirable trade-off 

between accuracy and computation costs, which is why it is 

appropriate with large datasets in dermatology. Pre-training 

the network with weights trained on a huge collection of 

natural images effectively transfers generic visual knowledge 

and eliminates the possibility of overfitting on small labelled 

but medical data.[26] 

2. The work incorporates the Convolutional Block Attention 

Module (CBAM) in certain steps of EfficientNet-B3 to carry 

out combined channel and spatial attention. CBAM also 

improves intermediate feature maps through modeling 

channel-wise importance by global pooling and gating, and 

by training on spatial attention masks which emphasize 

important regions in the lesion. The inherent dual attention 

mechanism enables the network to draw attention to 

diagnostically significant features, i.e. irregular pigment 

networks, unusual vascular patterns and lesion boundary, and 

suppress background noise and artifacts.[27] 

3. The suggested architecture is trained on the DermNet-23 

dataset (23 different classes of skin diseases), using the Adam 

optimizer and the categorical cross-entropy loss. The 

pipeline of the training process consists of the systematic 

preprocessing, the class-aware data augmentation, and the 

class-weighted optimization (where applicable) to reduce the 

impact of the class imbalance. This model is compared on a 

set of extensive measures which are the overall accuracy, 

macro and micro precision, recall, F1-score and per-class and 

macro-averaged area under ROC curve which is a rigorous 

measure of the performance of the model on all classes.[28] 

4. The research also performs the comparative experiment 

with the baseline CNNs and a simple model of EfficientNet-

B3 without integrating CBAM. Such comparisons measure 

the value of the attention mechanism and show that 

EfficientNet-B3 + CBAM setup becomes relatively stable in 

improving the macro-averaged F1-score and AUC under the 

multi-class condition. The findings reveal the importance of 

the use of attention to refine features in the distribution of 

complex dermatological images. Lastly, the paper focuses on 

the reproducibility and clinical relevance of the work by 

describing the model structure, training plan and evaluation 

protocol in a way that can be replicated and expanded by 

other researchers. The given framework demonstrates how 

the efficient and attention-enhanced transfer learning can 

facilitate further development of automated skin lesion 

classification and become the powerful background of the 

new computer-aided diagnosis systems designed to assist 

dermatologists and primary care providers in early skin 

disease detection.[29] 

2. Related work 

2.1 Handcrafted feature–based methods 

Initial methods of skin lesion classification were mainly 

based on handcrafted visual features with classical machine 

learning pipelines. In Codella et al.[30], there was the use of 

multi-view framework that combined the color and texture 

descriptors with sparse coding in melanoma detection, which 

focused on segmentation-based feature fusion in order to 

enhance the sensitivity, but manual designing of features 

restricted their use in heterogeneous images with imaging 

conditions. The sparse coding architecture suggested by 

Barata et al.[31], which uses local binary patterns (LBP) and 

color histograms with the support of support vector machines 

(SVMs) on ISIC datasets, proved to be resilient to the 

variations in illumination, but appeared to have difficulties 

when massive intra-class variability had to be considered. 

The system introduced by Ganster et al.[32] performs an 

extraction of the asymmetry, irregularity at the border, color 

change and diameter using the segmented lesions and 

diagnostic prediction using k-nearest neighbors, with results 

obtained being clinically viable when applied to early 

dermoscopic datasets. Abbas et al.[33] developed hybrid 

methodologies, where the grey-level co-occurrence matrix 

(GLCM) descriptors are coupled with wavelet-based color 

features and random forest classifiers to achieve specificity 

in detecting basal cell carcinoma, but with preprocessing 

accuracy that is very strict. Maglogiannis and Doukas[34] 

designed a mobile-specific pipeline based on principal 

component analysis (PCA) with shape and chromatic 

features handcrafted followed by SVM classification, which 

allowed real-time screening on consumer devices with lower 

accuracy on heterogeneous clinical imagery. 

 

2.2 Classical CNNs and transfer learning 

Deep convolutional neural networks have brought lesion 

analysis to end-to-end learning of features. In their study, 

Esteva et al.[35] trained transfer learning with Inception-v3 on 

129,450 clinical images to differentiate keratinocyte 

carcinomas and seborrheic keratoses, with large-scale 

augmentation and ensemble optimization to perform as well 

as a dermatologist would. Haenssle et al.[36] optimized 

ResNet-152 to melanoma detection on the ISIC 2017 

benchmark, including dermatologist-inspired preprocessing 

and test-time augmentation and weighed the result at 86.5% 

AUC, a result superior to that of experts. Inception-v4 and 

ResNet-152 ensembles were studied by Tschandl et al.[37] in 

a large-scale multicenter experiment and found the 

superiority of CNN in binary diagnostic task with a 

generalized human advantage on a rare case. Asriani et al.[38] 

proposes a technology-based solution by classifying skin 

cancer using a convolutional neural network (CNN) with a 

ResNet50 architecture implemented into a mobile 

application via a REST API using Flask. Daneshjou et al.[39] 

performed a thorough study on transfer learning cases of 

VGG, ResNet and DenseNet backbones emphasizing the 
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necessity of domain adaptation between clinical and 

dermoscopic domains and uncovering the still apparent 

shortcomings in multi-class generalization. 

 

2.3 EfficientNet architectures for skin lesions 

EfficientNet architectures introduced compound scaling to 

balance network depth, width, and spatial resolution. Manole 

et al.[40] demonstrated the implementation of a custom model 

based on EfficientNetB3 has demonstrated substantial 

potential for enhancing the diagnosis of skin lesions. This 

mode achieved a notably high accuracy rate (95.4%/88.8%), 

underscoring the critical role of a comprehensive and diverse 

dataset. Gessert et al.[41] fine-tuned EfficientNet-B4 for ISIC 

2019 melanoma classification using pseudo-labeling and 

test-time augmentation, achieving 0.915 AUC while 

reducing inference time relative to deep ResNet ensembles. 

Chaturvedi et al.[42] applied EfficientNet-B3 to HAM10000 

multi-class classification with lesion cropping and class 

rebalancing, reporting 85.2% accuracy and demonstrating 

improved extraction of subtle dermoscopic patterns under 

class imbalance. Toğaçar et al.[43] integrated EfficientNet-B0 

with capsule networks for a 7-class diagnostic model, 

achieving 95.6% accuracy on augmented DermNet subsets 

through hybrid attention fusion. Huang et al.[44] modified 

EfficientNet-B5 for federated teledermatology during 

COVID-19, achieving a 93.8% F1-score on diverse clinical 

images and validating feasibility for edge-device 

deployment. 

 

2.4 Attention mechanisms in dermatological CNNs 

Attention mechanisms have significantly enhanced CNN 

discriminability by prioritizing lesion-relevant regions. 

Ocal[45] presented V-shaped network combining Spatial and 

channel squeeze-excitation (scSE) and edge attention 

modules is proposed to enhance channel–spatial focus and 

lesion boundary retention in skin lesion segmentation. The 

model achieves superior performance, especially in IoU, on 

challenging ISIC datasets despite hardware limitations. 

Mahbod et al.[46] integrated SE modules into multi-scale 

ResNets for ISIC lesion analysis, reporting a 2.3% AUC 

improvement by emphasizing pigment-related features. Su et 

al.[47] introduced the Convolutional Block Attention Module 

(CBAM). Shetty et al.[48] embedded in DenseNet-121 for 

HAM10000 multi-class classification, attaining a 4.1% 

macro-F1 improvement via artifact suppression and lesion-

centered focus. Qian et al.[49] proposed a grouping of multi-

scale attention blocks (GMAB) which introduces different 

scale attention branch to expand the DCNN model. Hanum 

et al.[50] combined channel and spatial attention within a 

hybrid CNN-transformer architecture for 39-class lesion 

analysis, achieving 89.7% accuracy through cross-attention 

fusion. Rotemberg et al.[51] surveyed attention-integrated 

architectures, including SE–CBAM hybrids, documenting 3–

7% sensitivity improvements for melanoma detection while 

identifying the need for expanded multi-class evaluations 

across 20+ diagnostic categories. 

 

2.5 Research Gaps 

Despite advancements in attention-enhanced EfficientNet 

systems, several gaps remain. Prior studies such as Gessert 

et al.[41] and Haenssle et al.[36] focus predominantly on binary 

melanoma detection, limiting applicability to broader 

dermatological taxonomies such as DermNet-23's 23-class 

distribution. CBAM-based enhancements (e.g., Shetty et 

al.[48], Poma et al.[50]) improve macro-F1 performance but 

omit ablation studies comparing plain EfficientNet-B3 

baselines under severe class imbalance. Multi-scale attention 

frameworks (e.g., Qian et al.[49]) improve recall yet lack 

macro-averaged per-class AUC reporting, especially for rare 

disorders. Although handcrafted pipelines (e.g., Barata et 

al.[32]) remain valuable for interpretability, they do not match 

the representational capacity of modern end-to-end 

architectures. Comprehensive evaluations unifying 

EfficientNet-B3 with CBAM, supported by stratified metrics 

across the DermNet-23 dataset, channel- and spatial-

attention ablations, and edge-deployment feasibility analyses 

remain underexplored. These limitations motivate the 

present work’s targeted methodological contributions. 

 

2.6 Summary 

As summarized in Table 1, existing studies predominantly 

emphasize binary melanoma detection or limited multi-class 

settings, often neglecting the challenges posed by large-scale 

dermatological taxonomies and severe class imbalance.  

Although the recent attention-based methods exhibit 

better discriminative performance, they often do not include 

systematic ablation studies, macro-averaged AUC analysis, 

or testing with clinically heterogeneous datasets like the 

DermNet-23 one. It is in these gaps that there is a need to 

have a unified, attention-directed, and parameter-efficient 

framework that can be able to classify skin lesion classified 

into multiple classes in a robust manner; a fact that can be 

achieved through the given work. 

 

3. Proposed methodology 

The suggested approach will combine the state-of-the-art 

deep learning improvements to enhance the multi-class skin 

lesion classification on mixed dermoscopic and clinical 

images. Based on EfficientNet-B3 as the main feature 

extractor, the framework uses the elements of Convolutional 

Block Attention Module (CBAM) to increase the feature 

discrimination of the channel and spatial, especially when 

dealing with minority and visually unclear classes. The 

pipeline incorporates uniform preprocessing, lesion-focused 

augmentation, balanced training plans, and systematic 

ablation to determine the role played by the attention 

mechanisms. This part describes the model structure, data 

pre-treatment, training scheme and test procedure embraced 

to obtain strong and generalizable classification results. Fig. 

2 shows Flow diagram of the proposed EfficientNet-B3 +  
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Fig. 2: Flow diagram of the proposed EfficientNet-B3 + CBAM-based skin lesion classification framework. 

Table 1: Summary of existing studies, key contributions, and identified research gaps. 

Sr. No Study Dataset / Task Key Contributions Limitations / Research Gaps Ref. 

1 Gessert et al. (2020) ISIC 2019, Melanoma 

detection 

Multi-resolution EfficientNet 

ensemble with metadata 

improves AUC 

Limited to binary melanoma 

classification; no evaluation on 

large multi-class dermatology 

datasets 

[41] 

2 Haenssle et al. 

(2018) 

ISIC 2017, Melanoma 

vs benign 

CNN performance compared 

with dermatologists 

Focused on binary diagnosis; 

lacks scalability to 23+ class 

taxonomies 

[36] 

3 Esteva et al. (2017) Clinical images, 

binary tasks 

Achieved dermatologist-level 

accuracy using transfer 

learning 

Does not address class imbalance 

or fine-grained multi-class 

differentiation 

[35] 

4 Tschandl et al. 

(2020) 

Multi-center 

dermoscopy 

Human–AI collaboration 

improves performance 

Primarily evaluates binary tasks; 

limited per-class analysis 

[37] 

5 Shetty et al. (2020) HAM10000, multi-

class 

CNN-based dermoscopic 

lesion classification 

No attention ablation; limited 

discussion on minority classes 

[48] 

6 Hanum et al. (2025) 39-class dataset Attention-guided deep 

learning improves macro-F1 

Lacks baseline EfficientNet-B3 

comparison and computational 

cost analysis 

[50] 

7 Qian et al (2022) HAM10000 dataset  the grouping of multi-scale 

attention blocks (GMAB) to 

extract multi-scale fine-

grained features 

limitations in Sensitivity, Need 

optimize the classification 

accuracy of a small 

number of classes. 

[49] 

8 Chaturvedi et al. 

(2023) 

HAM10000, multi-

class 

EfficientNet-B3 with 

ensemble improves accuracy 

No explicit attention mechanisms; 

limited interpretability analysis 

[42] 

9 Harahap et al. 

(2024) 

Dermoscopic images EfficientNet architectures 

outperform classical CNNs 

Absence of attention modules and 

ablation studies 

[28] 

10 Ul Amin et al. 

(2024) 

Video anomaly 

datasets 

EfficientNet + CBAM 

improves feature 

discrimination 

Not designed for skin lesion 

classification; domain mismatch 

[29] 

11 Barata et al. (2012) Dermoscopy, 

handcrafted features 

Interpretable texture-color 

features 

Handcrafted pipelines lack 

representational capacity of 

modern DL 

[32] 

12 Ganster et al. 

(2000) 

Early dermoscopy Rule-based automated 

melanoma recognition 

Not scalable to modern datasets; 

outdated features 

[33] 

13 Maglogiannis & 

Doukas (2008) 

Mobile dermatology Early computer-vision-based 

screening 

Reduced accuracy on 

heterogeneous clinical images 

[34] 

CBAM-based skin lesion classification framework. 

 

3.1 Dataset and data preprocessing 

The DermNet-23 dataset, comprising 15,557 RGB images 

across 23 dermatological disease classes, forms the 

foundation for model development. Images exhibit variable 

resolutions (100×100 to 1024×768 pixels), acquisition 

artifacts (hair, rulers, markers), and clinical heterogeneity 

reflecting real-world dermoscopy and photography 

conditions. Preprocessing ensures input consistency for 

Dataset Preprocessing EfficientNet-B3 

Output Classifier CBAM 
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EfficientNet-B3: (1) resizing to 300×300 pixels via bilinear 

interpolation; (2) normalization to using ImageNet statistics 

(μ=[0.485, 0.456, 0.406], σ=[0.229, 0.224, 0.225]); (3) hair 

removal through morphological black-hat filtering and 

inpainting; (4) contrast-limited adaptive histogram 

equalization (CLAHE, clip limit=2.0) for lesion 

enhancement; and (5) optional lesion-centric cropping using 

Otsu thresholding where segmentation masks are available. 

These steps mitigate domain shift and background noise 

while preserving diagnostically relevant textures and 

pigment patterns. 

 

3.2 Data Splitting 

Class distributions are kept in stratified splitting: 70% 

training (10,890 images), 15% validation (2,334 images) and 

15% test (2,333 images), so that each class has 30 or more 

samples in the validation/test sets, which is sufficient to 

evaluate the macro-averaged performance. Hyperparameter 

optimization is achieved by using five-fold stratified cross-

validation on the training/validation split (80/20) to avoid 

overfitting and give unbiased estimates of generalization to 

the held-out test set. Class imbalance is directly monitored 

through verification of per-fold minority class sampling. 

 

3.3 Model training 

The model training phase incorporates the transfer learning, 

attention, and supervised optimization algorithms to create a 

powerful classifier in the identification of the lesion on the 

skin in multi-classes. The suggested method uses the 

EfficientNet-B3 as the main feature extractor and 

complements it with the Convolutional Block Attention 

Module (CBAM) to enhance the discriminative power of the 

learnt representations. 

3.4 Transfer learning with EfficientNet-B3 

EfficientNet-B3 is chosen because of its scaling strategy of 

compounds, which optimizes the depth, width and input 

resolution of the network at the same time. It is also 

decentralized in that it is started with ImageNet-pretrained 

weights allowing it to exploit generalized low-level and mid-

level visual features, which greatly accelerates convergence 

and extends model behaviour to outliers in medical imaging 

tasks. In order to stabilize and adapt flexibly, the first 

convolutional layers remain frozen throughout the early steps 

of the training process, and more layers are gradually 

unfrozen to enable fine-tuning of lesion-specific patterns. 

This is a training strategy with stages that helps to reduce the 

risk of catastrophic forgetting as well as stabilize gradient 

flow. 

Fig. 3 shows The Convolutional Block Attention Module 

(CBAM). CBAM is incorporated into selected EfficientNet-

B3 blocks to enhance feature refinement. CBAM operates 

through two sequential attention mechanisms: 

• Channel Attention: Trains a weight of each channel in the 

feature. To compute statistics through global average pooling 

and max pooling, squeeze and excitation operations are 

computed and shared multi-layer perceptrons (MLPs) are 

used to produce channel-wise attention maps. The attentions 

maps put a focus on clinically informative textures and 

pigmentations patterns. 

• Spatial Attention: Plays attention to the location of the most 

discriminative aspects of the lesion. The computation of the 

spatial attention maps consists of the convolution 

 of the pooled channel descriptors, which emphasize images 

areas that can be characterized as  

 
Fig. 3: The Convolutional Block Attention Module (CBAM). 
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asymmetry, irregularity of the border or abnormal 

pigmentation. 

CBAM together with the network helps in placing 

emphasis on the medically relevant structures and reducing 

irrelevant background noise. 

 

3.5 Classification head 

After attention-enhanced feature extraction, the output is fed 

into a classification head consisting of: 

• Global Average Pooling (GAP) 

• Dropout (rate = 0.3) to reduce overfitting 

• A dense layer with ReLU activation 

• A final SoftMax layer producing probability scores for 

the 23 lesion classes 

The design is such that it gives a small but expressive output 

representation, which can be used in multi-class 

classification. 

 

3.5.1 Optimization Algorithm 

The Adam optimizer is applied to learn and train stably and 

efficiently with a combination of adaptive learning rates and 

momentum. Medical imaging work is especially well done 

with Adam, as it supports the heterogeneous feature 

distributions. The optimizer optimizes the model parameters 

based on.: 

θ𝑡+1 = θ𝑡 − α ⋅
𝑚𝑡̂

√𝑣𝑡̂+ϵ
                            (1) 

The bias-corrected estimates of the first and second moment 

of the gradient, m t and v t, respectively, are known as the 

bias-corrected first and second moment, respectively, and the 

learning rate is 1/alpha. It uses a cosine decaying scheduler 

that decreases the learning rate with the number of epochs to 

allow the initial stages of training to learn coarsely and then 

the subsequent stages of training to fine-tune the parameter. 

 

3.6 Loss function and class imbalance handling 

The network is optimized using the Categorical Cross-

Entropy loss function, defined as: 

ℒ = −∑ 𝑤𝑖
23
𝑖=1  𝑦𝑖 log(𝑦𝑖̂)                    (2) 

yi is the ground-truth class label and y i is the probability of 

classiii. 

Considering the uneven classification of DermNet-23 

data, the weights of classes are added to the loss to penalize 

the mistake of the minority classes with an extra burden. This 

change makes underrepresented lesion types more sensitive 

and makes the classification more robust in general. 

 

3.7 Training strategy 

The training pipeline is a multi-stage process that is 

structured to have a stable convergence and successful 

feature learning: 

1.Freeze the initial EfficientNet-B3 layers in order to retain 

pretrained low-level feature representations. 

2.Training the classifier head only under a warming up 

period to stabilize the gradient flow. 

3.Layers of the backbone progressively unfreezing to allow 

finetuning on lesion patterns. 

4.Attention-enhanced representation learning 

 in the full network with the integrated CBAM modules. 

5.Checking the validation loss to implement early stopping 

where needed. 

6.Retaining the best performing model checkpoint on the 

validation performance. 

This staged optimization approach improves the stability of 

training, avoids overfitting, and facilitates good quality of 

discriminative feature representation of all lesion types. 

 

3.8 Evaluation metrics 

The performance measurement uses overall metric which 

cures multi-class imbalance: the aggregate accuracy, 

macro/micro-average precision (P), recall (R), F1-score and 

area under the ROC curve (AUC). In macro averaging, 

classes are given equal weight, giving more weight to rare 

conditions; in micro averaging, there is a weight on overall 

accuracy in prediction. Per-class measures the failure modes 

(e.g. melanoma vs. nevi confusion) and confusion matrices 

are used to visualize the patterns of errors. The kappa is an 

agreement measure created by Cohen that indicates whether 

there is agreement on a medical condition or not and top-3 

accuracy is an evaluation of clinical utility that involves a 

scenario in which dermatologists will look at differentials. 

The McNemar test (p<0.05) is used to test statistical 

significance across cross-validation folds. 

In order to measure the performance in a comprehensive 

way, several quantitative measures were calculated: 

1. Accuracy 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                         (3) 

Represents the overall proportion of correctly classified 

samples. 

2. Precision 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (4) 

Measures the reliability of positive predictions, i.e., how 

many predicted disease cases are correct. 

3. Recall (Sensitivity) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                 (5) 

Indicates the model’s ability to detect all true positive 

instances for a given disease. 

4. F1-Score 

𝐹1 = 2 ×
Precision×Recall

Precision+Recall
                     (6) 

Provides a harmonic mean of precision and recall, balancing 

both in a single metric. 

 AUC and ROC analysis 

Each class is calculated in a one-vs-rest fashion Area Under 

the Receiver Operating Characteristic Curve (AUC), and 
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averaged to give a macro-AUC.  AUC is the degree of 

separability of correct and incorrect prediction at different 

thresholds, less insensitive to the imbalance of the two 

classes than accuracy. 

𝐴𝑈𝐶 = ∫ TPR\𝑏𝑖𝑔(FPR−1(𝑥)\𝑏𝑖𝑔)
1

0
 𝑑𝑥                (7) 

 A higher AUC indicates improved discrimination between 

lesion categories. 

6. Confusion matrix 

A multi-class confusion matrix is generated to visualize 

classification behaviour for each lesion type. It highlights: 

• Misclassification patterns 

• Confusion between clinically similar categories 

• Improvements resulting from CBAM attention 

mechanisms 

This provides actionable insights for refining the model. 

7. Ablation studies 

To assess the contribution of attention modules, evaluation 

metrics are compared across: 

1. Baseline EfficientNet-B3 

2. EfficientNet-B3 + Channel Attention 

3. EfficientNet-B3 + Spatial Attention 

4. EfficientNet-B3 + CBAM (full attention) 

Ablation analysis measures the performance improvement 

which can be attributed to each design element. 

Accuracy, macro-F1, macro-AUC and confusion matrix 

visualization work well together as a set of evaluation. This 

makes sure that the proposed model is accurate, as well as 

reliable when applied to all 23 lesion classes, including rare 

and visually ambiguous classes. 

 

3.9 Testing 

The held-out test set is then evaluated with the ensemble-

averaged model (5 cross-validation folds) using the same 

preprocessing (no augmentation). Inference uses test-time 

augmentation (10 crops per image, average horizontal folds) 

and soft-voting folds to make robust predictions. Latency is 

captured on RTX 3050 (minimum 50ms/image to be used 

clinically). Gradient-weighted class activation maps (Grad-

CAM) visualization maps the focus of attention, confirming 

its localization in the areas of the lesions, rather than in the 

background. Subsets of ISIC-2018 external validation mimic 

domain shift, which measures generalization to unseen 

dermoscopic data. 

 

4. Result and discussion 

This section presents a comprehensive evaluation of the 

proposed EfficientNet-B3 + CBAM architecture on the 

DermNet-23 dataset. The performance of the model is 

analyzed quantitatively using standard classification metrics 

and qualitatively through confusion matrix visualizations 

and Grad-CAM–based interpretability assessments. 

Comparative experiments with baseline architectures 

demonstrate the effectiveness of the proposed approach in 

addressing class imbalance, visual ambiguity, and multi-

class complexity. 

 

4.1 Result of proposed EfficientNet-B3 + CBAM 

As indicated in the training and validation curves, the 

proposed EfficientNet-B3 + CBAM model is effective in 

learning and good at generalizing. The loss curve of both the 

loss curve monotonically decreases and validation loss 

remains low relative to training loss, which shows that there 

is good regularization and good optimization. The accuracy 

curves also indicate that validation accuracy is greater than 

training accuracy in all the epochs, which indicate that the 

model is more effective on clean validation data compared to 

the augmented training set. This behavior confirms that the 

network is neither overfitting nor underfitting and is 

successfully capturing discriminative features from the input 

images. 

Fig. 4(a) and Fig. 4(b) present the training and validation 

accuracy and loss curves of the proposed EfficientNet-B3 + 

CBAM model on the DermNet-23 dataset. The accuracy of 

the training shifts slowly to a steady level of 63-65, and the 

accuracy of the validation is rapidly growing to a steady level 

of about 76-78 and is a sign of successful learning and good 

generalization. In line with this, the initial training loss of 

above 3.0 drops to an almost 1.25 but the validation loss 

drops more and approaches 0.95-1.0. The gradual and 

gradual decline in the loss and the near perfect 

correspondence between the training and the validation curve 

verify that convergence was stable and that the optimization 

was successful and that there were minimal overfitting even 

in the case of the extreme class imbalance and multi-class 

characteristics of the DermNet-23 dataset. These remarks 

show that the compound scaling approach of EfficientNet-

B3 with attention-focused feature optimization allows 

learning discriminative dermatological patterns efficiently. 

Fig. 4(c) and Fig. 4(d), reflect the performance of the 

proposed model in classification using ROC and confusion 

matrix. The AUC of the one- vs-rest ROC curve is macro 

averaged at 0.94, which indicates that the ROC was strong in 

its discriminative ability across all 23 disease categories. A 

high level of diagonal dominance with a minor 

misclassification between the conditions of distinct clinical 

interest can be seen in the confusion matrix. This tendency 

underlines the performance of the CBAM module in focusing 

attention on salient spatial areas and informative channel 

characteristics, which leads to the balanced performance 

with the overall classification accuracy of 87.1, macro-

average precision of 86.2, macro-average recall of 85.0 and 

macro-F1 score of 85.6 as indicated in Table 3. 

To give a quantitative analysis of the visual confusion 

matrix, aggregated confusion matrix statistics (Table 2) and 

calculated evaluation metrics (Table 3) are summarized. 

Due to the multi-class (23-class) nature of the problem, 

TP, FP, and FN are reported in an aggregated manner, while 

TN is not uniquely defined and therefore is not reported as a 

scalar value. 
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Fig. 4: The result of proposed EfficientNet-B3 + CBAM (a) Accuracy, (b) Loss (c) ROC Curve (d) Confusion Matrix. 

 

Table 2: Aggregated confusion matrix statistics for the proposed EfficientNet-B3 + CBAM Model. 

Metric Value 

True Positives (TP) 1983 

False Positives (FP) 317 

False Negatives (FN) 350 

True Negatives (TN) Not uniquely defined (multi-class setting) 

Total Test Samples 2333 

Table 3: Performance metrics derived from aggregated confusion matrix statistics. 

Metric Formula Value 

Accuracy (TP + TN) / Total Samples 87.1% 

Precision (Macro) TP / (TP + FP) 86.2% 

Recall (Macro) TP / (TP + FN) 85.0% 

F1-Score (Macro) 2PR / (P + R) 85.6% 

AUC (Macro) One-vs-rest ROC area 0.94 
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Table 4: Performance comparison of baseline models and the proposed EfficientNet-B3 + CBAM Architecture. 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 
AUC 

Classical CNN 72.5 69.8 69.8 69.8 0.84 

ResNet50 78.2 76.5 76.5 76.5 0.88 

MobileNetV3 80.1 78.3 78.3 78.3 0.89 

EfficientNet-B3 82.4 80.7 80.7 80.7 0.91 

Proposed EfficientNet-B3 + 

CBAM 
87.1 86.2 85.0 85.6 0.94 

The combined confusion matrix statistics and macro-

averaged measures substantiate the statement that the 

proposed EfficientNet-B3 + CBAM model demonstrates 

balanced and strong classification results in all lesion 

categories in the case of class-imbalanced conditions. 

 

4.2 Qualitative and quantitative analysis 

The performance of the proposed model in terms of accuracy, 

macro-averaged precision, recall, F1-score, and area under 

the receiver operating characteristic curve (AUC) are used as 

standard multi-class classification metrics to measure the 

quantitative aspect of performance of the proposed 

EfficientNet-B3 + CBAM model. The model in question has 

an overall accuracy of 87.1 which is significantly higher than 

those of Classical CNN, ResNet50, MobileNetV3 and plain 

EfficientNet-B3 architectures. The macro-averaged 

precision of 86.2% and recall of 85.0% reveal equal 

predictive ability with majority classes and minority classes 

whereas the macro-F1 of 85.6% reveals strong harmonic 

performance in case of class imbalance. Moreover, the 

proposed strategy achieves a macro-AUC of 0.94 indicating 

high levels of class separability when analysing one-vs-rest 

ROC and high levels of discriminative ability in all the 

dermatologic categories evaluated. 

Table 4 presents the summaries of the comparative 

quantitative performance of the proposed model with four 

baseline architectures, including Classical CNN, ResNet50, 

MobileNetV3, and EfficientNet-B3. The findings indicate 

the steady positive changes across all assessment measures 

and confirm the efficiency of attention-guided refinement of 

features provided by the CBAM module in the combination 

with the EfficientNet-B3 backbone. 

Qualitative analysis is done by visual analysis of the 

confusion matrix and ROC curves in Fig. 4. The confusion 

matrix of the proposed EfficientNet-B3 + CBAM model has 

a high diagonal dominance, which means that numerous 

samples of lesions are accurately identified. Inconsistent 

classifications occur in majority of the clinically similar 

dermatological groups including visually similar 

inflammatory and pigmented lesions, and are attributed to 

realistic diagnostic uncertainty, and not haphazard prediction 

mistakes. Such organized error distribution is in line with the 

achieved macro-F1 score and AUC improvement. 

ROC analysis of one- vs-rest is also used to test the 

discriminative ability of the considered models. The 

proposed EfficientNet-B3 + CBAM model records the best 

macro-averaged AUC of 0.94 compared to EfficientNet-B3 

(AUC = 0.91) and the Classical CNN (AUC = 0.84). The 

ROC curves show that the true positive rates are high and the 

false positive rates do not inflate when the decision threshold 

varies, which makes the existence of strong multi-class 

separability. 

Overall, the quantitative output confirms the existence of 

evident performance improvement of the proposed 

architecture, whereas the qualitative analysis gives insight 

into the classification behavior and error characteristics of 

the proposed architecture. All these results show that 

incorporating EfficientNet-B3 along with CBAM creates the 

powerful and clinically useful multi-class skin lesion 

classification framework, which can successfully address 

class imbalance and visual similarity due to different 

dermatology diseases. 

 

5. Conclusion and future scope 

This was a paper where a deep learning model to classify skin 

lesions (several classes) was presented, combining 

EfficientNet-B3 with the Convolutional Block Attention 

Modules (CBAM). The suggested methodology used 

systematic preprocessing, balanced data augmentation and 

attention-based feature refinement to overcome major issues 

like imbalance of classes, visual diversity and subtle inter-

class similarities that characterize large-scale dermatological 

dataset like DermNet-23. Experimental analysis proved that 

the suggested EfficientNet-B3 + CBAM model had the 

overall classification accuracy of 87.1, macro-averaged 

precision of 86.2, macro-averaged recall of 85.0, and macro-

F1 score of 85.6, which proved the balanced and reliable 

performance in both the majority and minority lesion 

categories. Moreover, the macro-averaged AUC of the model 

is 0.94, which indicates the high class separability when 

using a one-vs-rest ROC analysis. Comparative experiments 

proved the attention-augmented architecture was always 

better than Classical CNN, ResNet50, MobileNetV3, and 

plain EfficientNet-B3 baselines, and proved that channel 

spatial attention is effective to improve the discriminative 

features learning. The studies on ablation further supported 
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the personal and joint efforts of the components of CBAM 

and showed that the components were more robust and could 

be generalized without important computational demands. 

Even with these encouraging outcomes, various areas of 

research can also be used to increase the clinical relevance 

and performance of the proposed system. To be accurate, 

generalization to other skin tones, other imaging devices, and 

acquisition conditions, such as in the real world, can be 

enhanced by extending training and evaluation to larger and 

more diverse and annotated datasets. Second, the use of 

attention mechanisms based on transformers, self-supervised 

pretraining methods, as well as multimodal fusion (using a 

dermoscopic image with clinical metadata) can be further 

adopted to enhance diagnostic accuracy and robustness. 

Third, privacy preserving model adaptation in distributed 

medical institutions can be facilitated by the integration of 

federated learning frameworks. Also, the inclusion of 

explainability methods including Grad-CAM++ or attention-

based saliency maps can increase clinical decision-support 

transparency and trust. Lastly, the real-time deployment of 

the model on lightweight edge devices, as well as its 

optimization and the ability to engage in constant 

improvements through active learning, are also promising 

directions of building scalable, reliable, and accessible 

dermatological AI systems. 
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