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Abstract

Skin diseases represent a significant global health challenge; however, precise automated detection of cutaneous lesions
remains difficult due to high intra-class variability, inter-class similarity, and severe class imbalance across disease categories.
This paper presents a multi-class skin lesion classification framework based on transfer learning, which integrates an
EfficientNet-B3 backbone with a Convolutional Block Attention Module (CBAM) to enhance the learning of discriminative
features. EfficientNet-B3, pre-trained on large-scale natural image datasets, serves as a powerful feature extractor, while
CBAM improves feature representation by adaptively emphasizing informative channels and spatial locations. This enables
the network to focus on diagnostically relevant lesion regions while suppressing background artifacts. The proposed model
is trained and evaluated on the DermNet-23 dataset, comprising 23 clinically significant skin disease classes. To address the
challenges of multi-class classification and class imbalance, performance is assessed using standard metrics including
accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC). Experimental results
demonstrate that the EfficientNet-B3 + CBAM model achieves 87.1% accuracy, 85.6% macro-F1 score, and 0.94 AUC,
outperforming baseline CNN, ResNet50, MobileNetV3, and standard EfficientNet-B3 models. These results highlight the
effectiveness of attention-guided transfer learning for developing robust and scalable computer-aided diagnostic systems

for skin lesion classification.

2025.

Keywords: Skin lesion classification; EfficientNet-B3; CBAM; Transfer learning; Computer-aided diagnosis.

Received: 20 November 2025; Revised: 29 December 2025; Accepted: 29 December 2025; Published Online: 30 December

1. Introduction

Melanoma and other types of skin cancer is an emerging
public health problem with high rates of morbidity, mortality,
and healthcare expenditure across the globe.l'l The World
Health Organization reports that the number of non-
melanoma skin cancer cases and over 300000 cases of
melanoma worldwide annually is increasing the amount of
concern regarding the public health implication of skin
diseases.?! Melanoma has a great likelihood of metastasis as
well as the largest percentage of deaths associated with skin

cancer even though it makes up a smaller portion of all
cases.’) Small melanoma can be easily removed with surgery
so that in its early stages, it is curable, but once diagnosed
late, surgery will not help much especially in terms of
survival, and it makes the treatment more complicated. The
non-melanoma skin cancer such as the basal cell carcinoma,
squamous cell carcinoma among others, also play a role in
contributing to high incidence of skin cancer in the world and
create a cumulative burden on dermatology.™ In this regard,
accurate and prompt detection of cutaneous lesions is
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essential in enhancing patient outcomes, resource allocation,
and large-scale screening initiatives, particularly in areas
with a shortage of experienced dermatologists.

1.1 Clinical background and dermoscopy

Dermoscopy is an imaging modality which is not invasive
and which enlarges and improves visualization of the
subcutaneous skin structures in order to allow a more
detailed evaluation of pigment patterns, vascular
organization, and lesion boundaries.’! Dermoscopy has a
significant higher diagnostic sensitivity and specificity of
melanoma and other pigmented lesions in the hands of
experts than the wunaided eye view. Nonetheless,
dermoscopy interpretation is very operator-specific, and it
involves a lot of training and experience. Even trained
dermatologists show inter-observer variability because of
minor and overlapping morphological patterns in benign and
malignant lesions. Furthermore, differences in imaging
equipment, conditions of acquisition and the type of skin of
the patient are other complicating factors which make
standardized visual assessment impossible.[” Fig. 1 illustrate
Clinical background and dermoscopy.

Clinicians in primary care and in a resource-constrained
setting might not receive the benefit of such higher levels of
dermoscopic training, resulting in either under-referral of
suspicious lesions or over-referral of benign lesions, which
has both clinical and economic implications. The growing
rate of skin lesion images that have been obtained through
dermatoscopes and consumer-grade cameras increase the
necessity of computation support that is scaled. It, therefore,
follows that there is an enthusiastic impetus to build
automated dermoscopic analysis frameworks capable of
estimating and/or adding to masterful performance and help
to standardize and equalize diagnostic procedures.

1.2 Challenges in manual dermoscopic assessment
Manual dermoscopic analysis is objective and it is subject to

cognitive bias including anchoring, fatigue and heuristic
reliance. The difference between early melanoma and benign
nevi or between inflammatory dermatoses and infectious or
neoplastic lesions is often based on subtle textural, chromatic
and structural effects that are not always easily identified.
There is also high intra-class variability(e.g., different
appearances of melanoma in different sites on the body and
in different skin tones) and inter-class similarity (e.g., benign
lesions that resemble malignancy) that further contribute to
obstacles to proper visual diagnosis.®]

Additionally, non-dermoscopic images do not invariably
correspond to the diagnostic criteria that are based on
dermoscopy e.g. pattern analysis, algorithmic scoring
systems, or the ABCD rule, and implementing these
diagnostic criteria as a system in a high-volume clinical
setting can be challenging. With the increase in image
repositories, manual inspection and triage are no longer
feasible, and computer-aided diagnosis (CAD) systems that
can process large-scale image streams and maintain the same
level of performance are sought. All these problems highlight
the importance of having powerful, data-driven procedures
capable of training discriminative patterns to go beyond
handcrafted specifications."!

1.3 Limitations of existing machine learning approaches
Original computational techniques to analyse skin lesions
used conventional machine learning pipelines of hand-
engineered feature-extractors (e.g., colour histograms,
texture descriptors, border irregularity measures) and
classifier (e.g. support vector machines, k-nearest neighbours
or random forests).['*141 Although these methods have given
a first-time understanding of whether automated lesion
recognition is feasible, their performance was inherently
limited by the expressiveness of manually specified
features.!”] Hand-crafted descriptors typically do not encode
high-order and complicated interaction between local
patterns, and are vulnerable to changes in illumination, scale,
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Fig. 1: Clinical background and dermoscopy.
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and camera.

Moreover, in classical pipelines, the explicit
segmentation of the lesion area against the skin around it is
performed, which is also a non-trivial and non-error-prone
step on its own. These errors in segmentation spread to
lower-level features and worsen classification. Class
imbalance also poses a challenge to many traditional
algorithms when working with real-world skin lesion data
since the number of benign lesions is many times the number
of cases of malignant lesions. Consequently, these techniques
are generally insensitive to rarity of occurrence but clinically
important classes, and are not sufficiently robust to be used
in heterogeneous clinical environments. ¢!

1.4 Limitations of existing deep learning approaches
Deep learning and convolutional neural networks (CNNs), in
particular, have significantly improved the medical image
analysis and  dermoscopic  lesion  classification
performance.l'”-!8  Traditional architectures like VGG,
ResNet, and Inception are highly accurate on hand-curated
benchmark data.l') Nonetheless, a number of constraints
exist when such models are implemented on realistic multi-
class skin disecase data that has a large range of
dermatological diseases.

First, most of the previous studies are dealing with binary
or low-cardinality classification (e.g., melanoma vs. benign),
(20211 which are not representative of the entire range of
dermatological  diagnoses seen in practice. The
generalization of such models to multi-class problems in
which dozens of types of diseases are involved creates
serious difficulties in learning the discriminatory features of
visually similar classes. Second, vanilla CNN architectures
commonly assume that all spatial locations and feature
channels are equal, and there is no explicit representation of
the relative significance of various regions and modalities of
the lesion image. The inability results in inefficient use of
both local and global contextual information especially in the
presence of background artifacts (hair, rulers, markers or
normal skin structures).

Third, generic image classification tasks are traditionally
based on conventional deep networks, which are not
optimized on a systematic basis on depth, width, and
resolution to the particular limitations of dermatological
data. The risk associated with over-parameterized model is
that it overfits small or moderate size clinical data, whereas
the risk associated with under-parameterized architecture is
that the model does not have enough capacity to learn the
more complex patterns of lesions. Moreover, most of the
existing methods fail to solve specific domain-related
problems which include extreme imbalance of classes,
uneven image quality and presence of non-clinical artifacts
within large repositories of skin images.*?!

1.5 Need for robust automated multi-class classification
The above shortcomings encourage the emergence of
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effective automated classification schemes to suit the case of
multi-class skin disease detection in diverse image data. An
effective CAD system in the field of dermatology must meet
a range of criteria: (1) high discriminative accuracy on a
broad range of lesion types, including rare but high-risk
cases; (2) robustness to noise, changing illumination and
acquisition artifacts; (3) effective exploitation of labelled
data through transfer learning with large natural image
corpora; and (4) architectural features to concentrate
computational resources on areas of lesion of diagnostic
interest as opposed to unproductive background.

In addition, these systems should be measured based on
clinical priorities, such as malignant and severe
inflammatory or infectious disease sensitivity, and macro-
averaged metrics, which considers class imbalance. In multi-
class scenarios, where further datasets such as DermNet-23,
with over twenty differing diagnostic cases, the
heterogeneous visualization of the data has to be managed,
yet not favoring the majority classes. Such demands demand
the high-level network designs involving the combination of
parameter-efficient backbones and explicit attention
mechanisms as well as the strict optimization techniques.>]

1.6 Problem statement

Nonetheless, even with much advancement in deep learning-
based skin lesion analysis, some critical gaps are found in
research. To begin with, a comparative lack of approaches
incorporating modern and compound-scale architectures,
including EfficientNet-B3,1>4 alongside attention
mechanisms with attention to dermatological image
properties, is relatively scarce. Most of the extant literature
is based on the application of legacy CNN backbones or the
application of attention modules narrowly or in an ad-hoc
fashion, without a thorough examination of their effect on
multi-class performance. Second, previous research tends to
focus on the general accuracy on a small sample of lesion
types, without giving much indication of per-class accuracy
and the model behavior under strong imbalance between
classes. Detailed studies based on macro-averaged precision,
recall, F1-score, and area under the ROC curve are required,
especially when data includes different and uneven
diagnostic categories. Third, not many studies offer an end-
to-end, reproducible pipeline to include effective
preprocessing, systematic data augmentation, optimized
transfer learning, and attention-focused feature refinement to
large multi-class dermatology datasets.

Lastly, it is not well-known how lightweight and
attention-enhanced architectures can help fill the gap
between research prototypes and clinically viable CAD
systems. Namely, how the integration of parameter-efficient
backbones and channelspatial attention will enhance
generalization without making the computationally
unsustainable to be deployed in a real-world clinical setting
is not fully studied yet.*!
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1.7 Novel contributions of this work

In order to fill the gaps, the work offers a transfer learning-
based model of multi-classes of skin lesions identification
The summarized key contributions are as follows.

1. The paper uses an EfficientNet-B3 backbone as the main
feature extractor of both dermoscopic and clinical images of
skin lesions. EfficientNet-B3 allows scaling the depth, width,
and input resolution of the network to a desirable trade-off
between accuracy and computation costs, which is why it is
appropriate with large datasets in dermatology. Pre-training
the network with weights trained on a huge collection of
natural images effectively transfers generic visual knowledge
and eliminates the possibility of overfitting on small labelled
but medical data.?"]

2. The work incorporates the Convolutional Block Attention
Module (CBAM) in certain steps of EfficientNet-B3 to carry
out combined channel and spatial attention. CBAM also
improves intermediate feature maps through modeling
channel-wise importance by global pooling and gating, and
by training on spatial attention masks which emphasize
important regions in the lesion. The inherent dual attention
mechanism enables the network to draw attention to
diagnostically significant features, i.e. irregular pigment
networks, unusual vascular patterns and lesion boundary, and
suppress background noise and artifacts.”

3. The suggested architecture is trained on the DermNet-23
dataset (23 different classes of skin diseases), using the Adam
optimizer and the categorical cross-entropy loss. The
pipeline of the training process consists of the systematic
preprocessing, the class-aware data augmentation, and the
class-weighted optimization (where applicable) to reduce the
impact of the class imbalance. This model is compared on a
set of extensive measures which are the overall accuracy,
macro and micro precision, recall, F1-score and per-class and
macro-averaged area under ROC curve which is a rigorous
measure of the performance of the model on all classes.?’

4. The research also performs the comparative experiment
with the baseline CNNs and a simple model of EfficientNet-
B3 without integrating CBAM. Such comparisons measure
the value of the attention mechanism and show that
EfficientNet-B3 + CBAM setup becomes relatively stable in
improving the macro-averaged F1-score and AUC under the
multi-class condition. The findings reveal the importance of
the use of attention to refine features in the distribution of
complex dermatological images. Lastly, the paper focuses on
the reproducibility and clinical relevance of the work by
describing the model structure, training plan and evaluation
protocol in a way that can be replicated and expanded by
other researchers. The given framework demonstrates how
the efficient and attention-enhanced transfer learning can
facilitate further development of automated skin lesion
classification and become the powerful background of the
new computer-aided diagnosis systems designed to assist
dermatologists and primary care providers in early skin
disease detection.>”!
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2. Related work

2.1 Handcrafted feature—based methods

Initial methods of skin lesion classification were mainly
based on handcrafted visual features with classical machine
learning pipelines. In Codella ef al.?%, there was the use of
multi-view framework that combined the color and texture
descriptors with sparse coding in melanoma detection, which
focused on segmentation-based feature fusion in order to
enhance the sensitivity, but manual designing of features
restricted their use in heterogeneous images with imaging
conditions. The sparse coding architecture suggested by
Barata et /.Y, which uses local binary patterns (LBP) and
color histograms with the support of support vector machines
(SVMs) on ISIC datasets, proved to be resilient to the
variations in illumination, but appeared to have difficulties
when massive intra-class variability had to be considered.
The system introduced by Ganster et al.’? performs an
extraction of the asymmetry, irregularity at the border, color
change and diameter using the segmented lesions and
diagnostic prediction using k-nearest neighbors, with results
obtained being clinically viable when applied to early
dermoscopic datasets. Abbas et al.** developed hybrid
methodologies, where the grey-level co-occurrence matrix
(GLCM) descriptors are coupled with wavelet-based color
features and random forest classifiers to achieve specificity
in detecting basal cell carcinoma, but with preprocessing
accuracy that is very strict. Maglogiannis and DoukasP*
designed a mobile-specific pipeline based on principal
component analysis (PCA) with shape and chromatic
features handcrafted followed by SVM classification, which
allowed real-time screening on consumer devices with lower
accuracy on heterogeneous clinical imagery.

2.2 Classical CNNs and transfer learning

Deep convolutional neural networks have brought lesion
analysis to end-to-end learning of features. In their study,
Esteva et al.®ltrained transfer learning with Inception-v3 on
129,450 clinical images to differentiate keratinocyte
carcinomas and seborrheic keratoses, with large-scale
augmentation and ensemble optimization to perform as well
as a dermatologist would. Haenssle et al.’®l optimized
ResNet-152 to melanoma detection on the ISIC 2017
benchmark, including dermatologist-inspired preprocessing
and test-time augmentation and weighed the result at 86.5%
AUC, a result superior to that of experts. Inception-v4 and
ResNet-152 ensembles were studied by Tschandl ef al.’7in
a large-scale multicenter experiment and found the
superiority of CNN in binary diagnostic task with a
generalized human advantage on a rare case. Asriani et al.l®]
proposes a technology-based solution by classifying skin
cancer using a convolutional neural network (CNN) with a
ResNet50 architecture implemented into a mobile
application via a REST API using Flask. Daneshjou et al.>”
performed a thorough study on transfer learning cases of
VGG, ResNet and DenseNet backbones emphasizing the
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necessity of domain adaptation between clinical and
dermoscopic domains and uncovering the still apparent
shortcomings in multi-class generalization.

2.3 EfficientNet architectures for skin lesions
EfficientNet architectures introduced compound scaling to
balance network depth, width, and spatial resolution. Manole
et al." demonstrated the implementation of a custom model
based on EfficientNetB3 has demonstrated substantial
potential for enhancing the diagnosis of skin lesions. This
mode achieved a notably high accuracy rate (95.4%/88.8%),
underscoring the critical role of a comprehensive and diverse
dataset. Gessert et al.*!l fine-tuned EfficientNet-B4 for ISIC
2019 melanoma classification using pseudo-labeling and
test-time augmentation, achieving 0.915 AUC while
reducing inference time relative to deep ResNet ensembles.
Chaturvedi et al.* applied EfficientNet-B3 to HAM10000
multi-class classification with lesion cropping and class
rebalancing, reporting 85.2% accuracy and demonstrating
improved extraction of subtle dermoscopic patterns under
class imbalance. Togagar et al.1¥ integrated EfficientNet-B0
with capsule networks for a 7-class diagnostic model,
achieving 95.6% accuracy on augmented DermNet subsets
through hybrid attention fusion. Huang et al.* modified
EfficientNet-BS for federated teledermatology during
COVID-19, achieving a 93.8% F1-score on diverse clinical
images and validating feasibility for edge-device
deployment.

2.4 Attention mechanisms in dermatological CNNs

Attention mechanisms have significantly enhanced CNN
discriminability by prioritizing lesion-relevant regions.
Ocal®! presented V-shaped network combining Spatial and
channel squeeze-excitation (scSE) and edge attention
modules is proposed to enhance channel-spatial focus and
lesion boundary retention in skin lesion segmentation. The
model achieves superior performance, especially in IoU, on
challenging ISIC datasets despite hardware limitations.
Mahbod et al™! integrated SE modules into multi-scale
ResNets for ISIC lesion analysis, reporting a 2.3% AUC
improvement by emphasizing pigment-related features. Su et
al.¥ introduced the Convolutional Block Attention Module
(CBAM). Shetty et al.®! embedded in DenseNet-121 for
HAM10000 multi-class classification, attaining a 4.1%
macro-F1 improvement via artifact suppression and lesion-
centered focus. Qian et al.*! proposed a grouping of multi-
scale attention blocks (GMAB) which introduces different
scale attention branch to expand the DCNN model. Hanum
et al.® combined channel and spatial attention within a
hybrid CNN-transformer architecture for 39-class lesion
analysis, achieving 89.7% accuracy through cross-attention
fusion. Rotemberg er al®'! surveyed attention-integrated
architectures, including SE-CBAM hybrids, documenting 3—
7% sensitivity improvements for melanoma detection while
identifying the need for expanded multi-class evaluations
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across 20+ diagnostic categories.

2.5 Research Gaps

Despite advancements in attention-enhanced EfficientNet
systems, several gaps remain. Prior studies such as Gessert
et al.*1 and Haenssle et al.3% focus predominantly on binary
melanoma detection, limiting applicability to broader
dermatological taxonomies such as DermNet-23's 23-class
distribution. CBAM-based enhancements (e.g., Shetty et
al.8l. Poma et al.’%) improve macro-F1 performance but
omit ablation studies comparing plain EfficientNet-B3
baselines under severe class imbalance. Multi-scale attention
frameworks (e.g., Qian et al.*!) improve recall yet lack
macro-averaged per-class AUC reporting, especially for rare
disorders. Although handcrafted pipelines (e.g., Barata et
al.P?) remain valuable for interpretability, they do not match
the representational capacity of modern end-to-end
architectures. ~ Comprehensive  evaluations  unifying
EfficientNet-B3 with CBAM, supported by stratified metrics
across the DermNet-23 dataset, channel- and spatial-
attention ablations, and edge-deployment feasibility analyses
remain underexplored. These limitations motivate the
present work’s targeted methodological contributions.

2.6 Summary
As summarized in Table 1, existing studies predominantly
emphasize binary melanoma detection or limited multi-class
settings, often neglecting the challenges posed by large-scale
dermatological taxonomies and severe class imbalance.
Although the recent attention-based methods exhibit
better discriminative performance, they often do not include
systematic ablation studies, macro-averaged AUC analysis,
or testing with clinically heterogeneous datasets like the
DermNet-23 one. It is in these gaps that there is a need to
have a unified, attention-directed, and parameter-efficient
framework that can be able to classify skin lesion classified
into multiple classes in a robust manner; a fact that can be
achieved through the given work.

3. Proposed methodology

The suggested approach will combine the state-of-the-art
deep learning improvements to enhance the multi-class skin
lesion classification on mixed dermoscopic and clinical
images. Based on EfficientNet-B3 as the main feature
extractor, the framework uses the elements of Convolutional
Block Attention Module (CBAM) to increase the feature
discrimination of the channel and spatial, especially when
dealing with minority and visually unclear classes. The
pipeline incorporates uniform preprocessing, lesion-focused
augmentation, balanced training plans, and systematic
ablation to determine the role played by the attention
mechanisms. This part describes the model structure, data
pre-treatment, training scheme and test procedure embraced
to obtain strong and generalizable classification results. Fig.
2 shows Flow diagram of the proposed EfficientNet-B3 +
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Fig. 2: Flow diagram of the proposed EfficientNet-B3 + CBAM-based skin lesion classification framework.

Dataset H Preprocessing HEfﬁcientNet-B3

\ 4

Output H Classifier H CBAM

Table 1: Summary of existing studies, key contributions, and identified research gaps.

Sr. No  Study Dataset / Task Key Contributions Limitations / Research Gaps Ref.
1 Gessert e al. (2020)  ISIC 2019, Melanoma  Multi-resolution EfficientNet  Limited to binary melanoma [41]
detection ensemble with metadata classification; no evaluation on
improves AUC large multi-class dermatology
datasets
2 Haenssle et al. ISIC 2017, Melanoma  CNN performance compared  Focused on binary diagnosis; [36]
(2018) vs benign with dermatologists lacks scalability to 23+ class
taxonomies
3 Esteva et al. (2017)  Clinical images, Achieved dermatologist-level ~ Does not address class imbalance  [35]
binary tasks accuracy using transfer or fine-grained multi-class
learning differentiation
4 Tschandl et al. Multi-center Human—AlI collaboration Primarily evaluates binary tasks; [37]
(2020) dermoscopy improves performance limited per-class analysis
5 Shetty et al. (2020) HAM10000, multi- CNN-based dermoscopic No attention ablation; limited [48]
class lesion classification discussion on minority classes
6 Hanum et al. (2025)  39-class dataset Attention-guided deep Lacks baseline EfficientNet-B3 [50]
learning improves macro-F1 comparison and computational
cost analysis
7 Qian et al (2022) HAM10000 dataset the grouping of multi-scale limitations in Sensitivity, Need [49]
attention blocks (GMAB) to optimize the classification
extract multi-scale fine- accuracy of a small
grained features number of classes.
8 Chaturvedi et al. HAM10000, multi- EfficientNet-B3 with No explicit attention mechanisms;  [42]
(2023) class ensemble improves accuracy limited interpretability analysis
9 Harahap et al. Dermoscopic images EfficientNet architectures Absence of attention modules and ~ [28]
(2024) outperform classical CNNs ablation studies
10 Ul Amin et al. Video anomaly EfficientNet + CBAM Not designed for skin lesion [29]
(2024) datasets improves feature classification; domain mismatch
discrimination
11 Barata ef al. (2012)  Dermoscopy, Interpretable texture-color Handcrafted pipelines lack [32]
handcrafted features features representational capacity of
modern DL
12 Ganster et al. Early dermoscopy Rule-based automated Not scalable to modern datasets; [33]
(2000) melanoma recognition outdated features
13 Maglogiannis & Mobile dermatology Early computer-vision-based =~ Reduced accuracy on [34]
Doukas (2008) screening heterogeneous clinical images

CBAM-based skin lesion classification framework. foundation for model development. Images exhibit variable
resolutions (100x100 to 1024x768 pixels), acquisition
artifacts (hair, rulers, markers), and clinical heterogeneity
reflecting real-world dermoscopy and photography

conditions. Preprocessing ensures input consistency for

3.1 Dataset and data preprocessing
The DermNet-23 dataset, comprising 15,557 RGB images
across 23 dermatological disease classes, forms the

F GR Scholastic

G I sl

6 | J. Smart Sens. Comput., 2025, 1, 25213


https://gr-journals.com/about_gr.php

Volume 1 Issue 3 (December 2025)

Research article

EfficientNet-B3: (1) resizing to 300x300 pixels via bilinear
interpolation; (2) normalization to using ImageNet statistics
(1=[0.485, 0.456, 0.406], 6=[0.229, 0.224, 0.225]); (3) hair
removal through morphological black-hat filtering and
inpainting; (4) contrast-limited adaptive histogram
equalization (CLAHE, clip limit=2.0) for Iesion
enhancement; and (5) optional lesion-centric cropping using
Otsu thresholding where segmentation masks are available.
These steps mitigate domain shift and background noise
while preserving diagnostically relevant textures and
pigment patterns.

3.2 Data Splitting

Class distributions are kept in stratified splitting: 70%
training (10,890 images), 15% validation (2,334 images) and
15% test (2,333 images), so that each class has 30 or more
samples in the validation/test sets, which is sufficient to
evaluate the macro-averaged performance. Hyperparameter
optimization is achieved by using five-fold stratified cross-
validation on the training/validation split (80/20) to avoid
overfitting and give unbiased estimates of generalization to
the held-out test set. Class imbalance is directly monitored
through verification of per-fold minority class sampling.

3.3 Model training

The model training phase incorporates the transfer learning,
attention, and supervised optimization algorithms to create a
powerful classifier in the identification of the lesion on the
skin in multi-classes. The suggested method uses the
EfficientNet-B3 as the main feature extractor and
complements it with the Convolutional Block Attention
Module (CBAM) to enhance the discriminative power of the

learnt representations.

3.4 Transfer learning with EfficientNet-B3
EfficientNet-B3 is chosen because of its scaling strategy of
compounds, which optimizes the depth, width and input
resolution of the network at the same time. It is also
decentralized in that it is started with ImageNet-pretrained
weights allowing it to exploit generalized low-level and mid-
level visual features, which greatly accelerates convergence
and extends model behaviour to outliers in medical imaging
tasks. In order to stabilize and adapt flexibly, the first
convolutional layers remain frozen throughout the early steps
of the training process, and more layers are gradually
unfrozen to enable fine-tuning of lesion-specific patterns.
This is a training strategy with stages that helps to reduce the
risk of catastrophic forgetting as well as stabilize gradient
flow.

Fig. 3 shows The Convolutional Block Attention Module
(CBAM). CBAM is incorporated into selected EfficientNet-
B3 blocks to enhance feature refinement. CBAM operates
through two sequential attention mechanisms:

e Channel Attention: Trains a weight of each channel in the
feature. To compute statistics through global average pooling
and max pooling, squeeze and excitation operations are
computed and shared multi-layer perceptrons (MLPs) are
used to produce channel-wise attention maps. The attentions
maps put a focus on clinically informative textures and
pigmentations patterns.

e Spatial Attention: Plays attention to the location of the most
discriminative aspects of the lesion. The computation of the
spatial attention maps consists of the convolution
of the pooled channel descriptors, which emphasize images
areas that can be characterized as

A Convolutional Neural Network

Convolution

Fully Connected

7 S

Channel
Attention Module

s

Input Feature

I

Spatial
Attention
Module

\

Fig. 3: The Convolutional Block Attention Module (CBAM).
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asymmetry, irregularity of the border or abnormal
pigmentation.

CBAM together with the network helps in placing
emphasis on the medically relevant structures and reducing

irrelevant background noise.

3.5 Classification head

After attention-enhanced feature extraction, the output is fed
into a classification head consisting of:

o Global Average Pooling (GAP)

e Dropout (rate = 0.3) to reduce overfitting

e A dense layer with ReLU activation

e A final SoftMax layer producing probability scores for
the 23 lesion classes

The design is such that it gives a small but expressive output
representation, which can be used in multi-class
classification.

3.5.1 Optimization Algorithm
The Adam optimizer is applied to learn and train stably and
efficiently with a combination of adaptive learning rates and
momentum. Medical imaging work is especially well done
with Adam, as it supports the heterogencous feature
distributions. The optimizer optimizes the model parameters
based on.:

My
JTr+e
The bias-corrected estimates of the first and second moment
of the gradient, m t and v t, respectively, are known as the
bias-corrected first and second moment, respectively, and the
learning rate is 1/alpha. It uses a cosine decaying scheduler
that decreases the learning rate with the number of epochs to
allow the initial stages of training to learn coarsely and then
the subsequent stages of training to fine-tune the parameter.

By =0 —a-

(M

3.6 Loss function and class imbalance handling
The network is optimized using the Categorical Cross-
Entropy loss function, defined as:

@

yi is the ground-truth class label and y i is the probability of
classiii.

Considering the uneven classification of DermNet-23
data, the weights of classes are added to the loss to penalize
the mistake of the minority classes with an extra burden. This
change makes underrepresented lesion types more sensitive
and makes the classification more robust in general.

L=-%22 w; y;log®)

3.7 Training strategy

The training pipeline is a multi-stage process that is
structured to have a stable convergence and successful
feature learning:

1.Freeze the initial EfficientNet-B3 layers in order to retain
pretrained low-level feature representations.

2.Training the classifier head only under a warming up
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period to stabilize the gradient flow.

3.Layers of the backbone progressively unfreezing to allow
finetuning on lesion patterns.

4.Attention-enhanced representation learning

in the full network with the integrated CBAM modules.
5.Checking the validation loss to implement early stopping
where needed.

6.Retaining the best performing model checkpoint on the
validation performance.

This staged optimization approach improves the stability of
training, avoids overfitting, and facilitates good quality of
discriminative feature representation of all lesion types.

3.8 Evaluation metrics
The performance measurement uses overall metric which
cures multi-class imbalance: the aggregate accuracy,
macro/micro-average precision (P), recall (R), F1-score and
area under the ROC curve (AUC). In macro averaging,
classes are given equal weight, giving more weight to rare
conditions; in micro averaging, there is a weight on overall
accuracy in prediction. Per-class measures the failure modes
(e.g. melanoma vs. nevi confusion) and confusion matrices
are used to visualize the patterns of errors. The kappa is an
agreement measure created by Cohen that indicates whether
there is agreement on a medical condition or not and top-3
accuracy is an evaluation of clinical utility that involves a
scenario in which dermatologists will look at differentials.
The McNemar test (p<0.05) is used to test statistical
significance across cross-validation folds.

In order to measure the performance in a comprehensive
way, several quantitative measures were calculated:
1. Accuracy

TP+TN

ACCUraCY = T rp N ®)
Represents the overall proportion of correctly classified
samples.
2. Precision
Precision = —— “)
TP+FP

Measures the reliability of positive predictions, i.e., how
many predicted disease cases are correct.
3. Recall (Sensitivity)

TP
TP+FN

Recall =

)

Indicates the model’s ability to detect all true positive
instances for a given disease.
4. F1-Score

PrecisionxRecall

F1=2x (6)

Provides a harmonic mean of precision and recall, balancing
both in a single metric.

5. AUC and ROC analysis

Each class is calculated in a one-vs-rest fashion Area Under
the Receiver Operating Characteristic Curve (AUC), and

Precision+Recall
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averaged to give a macro-AUC. AUC is the degree of
separability of correct and incorrect prediction at different
thresholds, less insensitive to the imbalance of the two
classes than accuracy.

AUC = [ TPR\big(FPR™*(x)\big) dx )

A higher AUC indicates improved discrimination between

lesion categories.

6. Confusion matrix

A multi-class confusion matrix is generated to visualize

classification behaviour for each lesion type. It highlights:

e Misclassification patterns

¢ Confusion between clinically similar categories

e Improvements resulting from CBAM
mechanisms

This provides actionable insights for refining the model.

7. Ablation studies

To assess the contribution of attention modules, evaluation

metrics are compared across:

1. Baseline EfficientNet-B3

2. EfficientNet-B3 + Channel Attention

3. EfficientNet-B3 + Spatial Attention

4. EfficientNet-B3 + CBAM (full attention)

Ablation analysis measures the performance improvement

which can be attributed to each design element.

Accuracy, macro-F1, macro-AUC and confusion matrix

visualization work well together as a set of evaluation. This

makes sure that the proposed model is accurate, as well as

reliable when applied to all 23 lesion classes, including rare

and visually ambiguous classes.

attention

3.9 Testing

The held-out test set is then evaluated with the ensemble-
averaged model (5 cross-validation folds) using the same
preprocessing (no augmentation). Inference uses test-time
augmentation (10 crops per image, average horizontal folds)
and soft-voting folds to make robust predictions. Latency is
captured on RTX 3050 (minimum 50ms/image to be used
clinically). Gradient-weighted class activation maps (Grad-
CAM) visualization maps the focus of attention, confirming
its localization in the areas of the lesions, rather than in the
background. Subsets of ISIC-2018 external validation mimic
domain shift, which measures generalization to unseen
dermoscopic data.

4. Result and discussion

This section presents a comprehensive evaluation of the
proposed EfficientNet-B3 + CBAM architecture on the
DermNet-23 dataset. The performance of the model is
analyzed quantitatively using standard classification metrics
and qualitatively through confusion matrix visualizations
and Grad-CAM-based interpretability  assessments.
Comparative experiments with baseline architectures
demonstrate the effectiveness of the proposed approach in
addressing class imbalance, visual ambiguity, and multi-

:‘o" G R Scholastic

class complexity.

4.1 Result of proposed EfficientNet-B3 + CBAM

As indicated in the training and validation curves, the
proposed EfficientNet-B3 + CBAM model is effective in
learning and good at generalizing. The loss curve of both the
loss curve monotonically decreases and validation loss
remains low relative to training loss, which shows that there
is good regularization and good optimization. The accuracy
curves also indicate that validation accuracy is greater than
training accuracy in all the epochs, which indicate that the
model is more effective on clean validation data compared to
the augmented training set. This behavior confirms that the
network is neither overfitting nor underfitting and is
successfully capturing discriminative features from the input
images.

Fig. 4(a) and Fig. 4(b) present the training and validation
accuracy and loss curves of the proposed EfficientNet-B3 +
CBAM model on the DermNet-23 dataset. The accuracy of
the training shifts slowly to a steady level of 63-65, and the
accuracy of the validation is rapidly growing to a steady level
of about 76-78 and is a sign of successful learning and good
generalization. In line with this, the initial training loss of
above 3.0 drops to an almost 1.25 but the validation loss
drops more and approaches 0.95-1.0. The gradual and
gradual decline in the loss and the near perfect
correspondence between the training and the validation curve
verify that convergence was stable and that the optimization
was successful and that there were minimal overfitting even
in the case of the extreme class imbalance and multi-class
characteristics of the DermNet-23 dataset. These remarks
show that the compound scaling approach of EfficientNet-
B3 with attention-focused feature optimization allows
learning discriminative dermatological patterns efficiently.

Fig. 4(c) and Fig. 4(d), reflect the performance of the
proposed model in classification using ROC and confusion
matrix. The AUC of the one- vs-rest ROC curve is macro
averaged at 0.94, which indicates that the ROC was strong in
its discriminative ability across all 23 disease categories. A
high level of diagonal dominance with a minor
misclassification between the conditions of distinct clinical
interest can be seen in the confusion matrix. This tendency
underlines the performance of the CBAM module in focusing
attention on salient spatial areas and informative channel
characteristics, which leads to the balanced performance
with the overall classification accuracy of 87.1, macro-
average precision of 86.2, macro-average recall of 85.0 and
macro-F1 score of 85.6 as indicated in Table 3.

To give a quantitative analysis of the visual confusion
matrix, aggregated confusion matrix statistics (Table 2) and
calculated evaluation metrics (Table 3) are summarized.

Due to the multi-class (23-class) nature of the problem,
TP, FP, and FN are reported in an aggregated manner, while
TN is not uniquely defined and therefore is not reported as a
scalar value.

J. Smart Sens. Comput., 2025,1,25213 |9


https://gr-journals.com/about_gr.php

Research article

Volume 1 Issue 3 (December 2025)

08 Training and validation accuracy Training and validation loss
3.0 Training loss
— Validation loss
0.6 2.5
o)
S 2 2.0
= o]
8 04 -
P
1.5
0.2 Training acc
—— Validation acc 1.0
0 100 200 300 0 100 200 300
Epochs Epochs
@ (b)

True Positive Rate
b4
»

ROC Curve - Proposed EfficientNet-B3 + CBAM {DermNet-23)

034

o
kS

024

0.0+

—— Macra-average ROC (AUC = 0.94)
Random Classifier

00 0.2 0.4 0.6 08 10

False Positive Rate

R

()

Fig. 4: The result of proposed EfficientNet-B3 + CBAM (a) Accuracy, (b) Loss (¢) ROC Curve (d) Confusion Matrix.

Table 2: Aggregated confusion matrix statistics for the proposed EfficientNet-B3 + CBAM Model.

Metric Value

True Positives (TP) 1983

False Positives (FP) 317

False Negatives (FN) 350

True Negatives (TN)  Not uniquely defined (multi-class setting)

Total Test Samples 2333

Table 3: Performance metrics derived from aggregated confusion matrix statistics.

Metric Formula Value
Accuracy (TP + TN) / Total Samples 87.1%
Precision (Macro) TP /(TP + FP) 86.2%
Recall (Macro) TP /(TP + FN) 85.0%
F1-Score (Macro) 2PR /(P +R) 85.6%
AUC (Macro) One-vs-rest ROC area 0.94
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Table 4: Performance comparison of baseline models and the proposed EfficientNet-B3 + CBAM Architecture.

Accuracy  Precision  Recall  F1-Score
Model AUC

(%0) (%) (o) (%)
Classical CNN 72.5 69.8 69.8 69.8 0.84
ResNet50 78.2 76.5 76.5 76.5 0.88
MobileNetV3 80.1 78.3 78.3 78.3 0.89
EfficientNet-B3 82.4 80.7 80.7 80.7 0.91
Proposed EfficientNet-B3 +

87.1 86.2 85.0 85.6 0.94

CBAM

The combined confusion matrix statistics and macro-
averaged measures substantiate the statement that the
proposed EfficientNet-B3 + CBAM model demonstrates
balanced and strong classification results in all lesion
categories in the case of class-imbalanced conditions.

4.2 Qualitative and quantitative analysis

The performance of the proposed model in terms of accuracy,
macro-averaged precision, recall, F1-score, and area under
the receiver operating characteristic curve (AUC) are used as
standard multi-class classification metrics to measure the
quantitative aspect of performance of the proposed
EfficientNet-B3 + CBAM model. The model in question has
an overall accuracy of 87.1 which is significantly higher than
those of Classical CNN, ResNet50, MobileNetV3 and plain
EfficientNet-B3  architectures. The  macro-averaged
precision of 86.2% and recall of 85.0% reveal equal
predictive ability with majority classes and minority classes
whereas the macro-F1 of 85.6% reveals strong harmonic
performance in case of class imbalance. Moreover, the
proposed strategy achieves a macro-AUC of 0.94 indicating
high levels of class separability when analysing one-vs-rest
ROC and high levels of discriminative ability in all the
dermatologic categories evaluated.

Table 4 presents the summaries of the comparative
quantitative performance of the proposed model with four
baseline architectures, including Classical CNN, ResNet50,
MobileNetV3, and EfficientNet-B3. The findings indicate
the steady positive changes across all assessment measures
and confirm the efficiency of attention-guided refinement of
features provided by the CBAM module in the combination
with the EfficientNet-B3 backbone.

Qualitative analysis is done by visual analysis of the
confusion matrix and ROC curves in Fig. 4. The confusion
matrix of the proposed EfficientNet-B3 + CBAM model has
a high diagonal dominance, which means that numerous
samples of lesions are accurately identified. Inconsistent
classifications occur in majority of the clinically similar
dermatological  groups including visually similar
inflammatory and pigmented lesions, and are attributed to
realistic diagnostic uncertainty, and not haphazard prediction
mistakes. Such organized error distribution is in line with the
achieved macro-F1 score and AUC improvement.

:‘o" G R Scholastic

ROC analysis of one- vs-rest is also used to test the
discriminative ability of the considered models. The
proposed EfficientNet-B3 + CBAM model records the best
macro-averaged AUC of 0.94 compared to EfficientNet-B3
(AUC = 0.91) and the Classical CNN (AUC = 0.84). The
ROC curves show that the true positive rates are high and the
false positive rates do not inflate when the decision threshold
varies, which makes the existence of strong multi-class

separability.
Overall, the quantitative output confirms the existence of
evident performance improvement of the proposed

architecture, whereas the qualitative analysis gives insight
into the classification behavior and error characteristics of
the proposed architecture. All these results show that
incorporating EfficientNet-B3 along with CBAM creates the
powerful and clinically useful multi-class skin lesion
classification framework, which can successfully address
class imbalance and visual similarity due to different
dermatology diseases.

5. Conclusion and future scope

This was a paper where a deep learning model to classify skin
lesions (several classes) was presented, combining
EfficientNet-B3 with the Convolutional Block Attention
Modules (CBAM). The suggested methodology used
systematic preprocessing, balanced data augmentation and
attention-based feature refinement to overcome major issues
like imbalance of classes, visual diversity and subtle inter-
class similarities that characterize large-scale dermatological
dataset like DermNet-23. Experimental analysis proved that
the suggested EfficientNet-B3 + CBAM model had the
overall classification accuracy of 87.1, macro-averaged
precision of 86.2, macro-averaged recall of 85.0, and macro-
F1 score of 85.6, which proved the balanced and reliable
performance in both the majority and minority lesion
categories. Moreover, the macro-averaged AUC of the model
is 0.94, which indicates the high class separability when
using a one-vs-rest ROC analysis. Comparative experiments
proved the attention-augmented architecture was always
better than Classical CNN, ResNet50, MobileNetV3, and
plain EfficientNet-B3 baselines, and proved that channel
spatial attention is effective to improve the discriminative
features learning. The studies on ablation further supported
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the personal and joint efforts of the components of CBAM
and showed that the components were more robust and could
be generalized without important computational demands.
Even with these encouraging outcomes, various areas of
research can also be used to increase the clinical relevance
and performance of the proposed system. To be accurate,
generalization to other skin tones, other imaging devices, and
acquisition conditions, such as in the real world, can be
enhanced by extending training and evaluation to larger and
more diverse and annotated datasets. Second, the use of
attention mechanisms based on transformers, self-supervised
pretraining methods, as well as multimodal fusion (using a
dermoscopic image with clinical metadata) can be further
adopted to enhance diagnostic accuracy and robustness.
Third, privacy preserving model adaptation in distributed
medical institutions can be facilitated by the integration of
federated learning frameworks. Also, the inclusion of
explainability methods including Grad-CAM++ or attention-
based saliency maps can increase clinical decision-support
transparency and trust. Lastly, the real-time deployment of
the model on lightweight edge devices, as well as its
optimization and the ability to engage in constant
improvements through active learning, are also promising
directions of building scalable, reliable, and accessible
dermatological Al systems.
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